

A Clean, Connected and
Climate Resilient Merrimack Watershed:
**The 2025
Merrimack Watershed
Conservation Plan**

© Jerry Monkman
(EcoPhotography)

CONTENTS

Executive Summary.....	3
The Merrimack Watershed Conservation Plan: A Shared Vision for Conservation in the Merrimack River Watershed	3
Focal Communities	3
Spatial Themes	3
Acknowledgements	4
The Merrimack Conservation Partnership.....	5
Planning as a Collaborative Team	6
Planning for a Healthier Merrimack	7
The Approach	7
Data Collection: A community-informed approach.....	7
Selecting Focal Communities	7
Municipal and Organizational Partner Interviews.....	9
Community-Based Organization Engagement.....	10
Polling.....	14
Participation in Community Events	14
Community Mapping.....	17
Spatial Analysis Results	18
Merrimack Conservation Partnership Service Area	18
Wildlife Habitat and Connectivity	20
Working Lands	25
Priority Agricultural Resources.....	25
Priority Forestry Lands.....	25
Water Resources	31
Pollutant Attenuation and Removal Areas	31
High Potential Areas for Renaturing.....	34
Public Water Supply	37
Community Climate Resilience.....	42
Conclusion: Advancing a Shared Vision for the Merrimack River Watershed	55
Call to Action	55
Appendices	56

EXECUTIVE SUMMARY

THE MERRIMACK WATERSHED CONSERVATION PLAN: A SHARED VISION FOR CONSERVATION IN THE MERRIMACK RIVER WATERSHED

The 2025 Merrimack Watershed Conservation Plan (the plan) offers a science-based framework for guiding conservation action across one of New England's most ecologically and socially significant watersheds. By integrating robust spatial analysis with meaningful community engagement, the plan identifies high-impact opportunities to deploy land protection, restoration and nature-based solutions for a sustainable, ecologically healthy and climate-resilient Merrimack River watershed. The plan equips conservation practitioners with the tools and data needed to align efforts across disciplines, address climate resilience and deliver lasting benefits for both people and nature throughout the Merrimack River watershed.

The original 2014 plan focused on land conservation priorities in undeveloped portions of the watershed. The 2025 plan expands the focus to include conservation opportunities in the developed and densely populated areas of the watershed. The plan's community-informed approach identifies specific vulnerabilities and opportunities in the largest cities along the Merrimack River.

FOCAL COMMUNITIES

The watershed is home to more than 2.6 million residents in more than 180 communities across two states. Focusing efforts on deeper engagement in fewer communities allowed us to build stronger relationships with local organizations, learn from residents and address significant gaps within the 2014 conservation plan.

From the outset of the project, the team focused engagement efforts on four major cities along the mainstem of the river which had received nearly no coverage in the 2014 plan: **Lowell and Lawrence, Massachusetts and Manchester and Nashua, New Hampshire**. These are large cities with limited green space and each still bears the legacy of the textile mills which reshaped the river during the Industrial Revolution.

SPATIAL THEMES

Input from the Merrimack Conservation Partnership members and the broader community informed the plan's four themes: community climate resilience, wildlife habitat and connectivity, working lands and water resources. Alone, each theme highlights priority areas for projects that meet a specific need; together, they highlight places where projects can provide multiple benefits for nature and people.

- **Community Climate Resilience** identifies priority areas using integrated spatial modeling and community-informed data to address flood risk, heat vulnerability, tree cover and access to green space.
- **Wildlife Habitat and Connectivity** identifies priority areas for protecting and restoring habitats, resilient landscapes and wildlife corridors.
- **Working Lands** highlights agricultural and forestry landscapes with high conservation value, based on soil quality and land cover.
- **Water Resources** targets areas where restoration and renaturing can improve water quality, protect wetlands and safeguard public water supplies.

© Jerry Monkman
(EcoPhotography)

ACKNOWLEDGEMENTS

This project was led by The Nature Conservancy in New Hampshire and Massachusetts in collaboration with the Merrimack Conservation Partnership. This project was supported in part by the National Fish and Wildlife Foundation through a grant from the National Coastal Resilience Fund, by the generosity of multiple private foundations and by the Society for the Protection of New Hampshire Forests.

Report Authors: Katie Folts, Emma Gildesgame, Allyson Snell and Anna Ormiston

This project could not have been successful without the collaboration and support of our community advisors and partners, specifically Julio Mejia (Merrimack Valley Project), Eddie Rosa (Groundwork Lawrence), Jane Calvin (Lowell Parks and Conservation Trust) in Massachusetts. In New Hampshire, we are grateful to our community advisors and partners from Granite State Organizing Project: Favour Ben-Okafor, Tonia Knisley, Loïs Numbi, Viola Katusiime and Tori Markiewicz.

We gratefully acknowledge the Merrimack Conservation Partnership and the contributions of the Partnership Advisory Committee. Your collaboration and expertise were essential in shaping and designing the conservation plan, ensuring it reflects both scientific rigor and shared community priorities. We also extend our special thanks to Brian Hotz for convening and leading the partnership and serving as a key advisor throughout this planning effort. This collective effort has laid a strong foundation for achieving long-term conservation goals for the watershed.

In addition to the project team members listed as authors, the following current and former employees of The Nature Conservancy played a crucial role in the success of this project: Alison Bowden, Holly Costello, Charles DeCurtis, Jessica Dietrich, Loren Dowd, Sarah Garlick, Megan Gordon, Susie Hackler, Meredith Hatfield, Megan Latour, Melissa Leszek, Tina McCarthy, Jim O'Brien, Jessica Rice Healy, Rachel Rouillard, Pete Steckler, Ben Sweeney, Matthew Thorne and Sheila Vargas Torres.

Suggested Citation: Ormiston, Anna, Gildesgame, Emma, Snell, Allyson, and Folts, Katie, 2025. The Nature Conservancy. A Clean, Connected and Climate Resilient Merrimack Watershed: The 2025 Merrimack Watershed Conservation Plan. www.nature.org/Merrimack.

© Jerry Monkman
(EcoPhotography)

THE MERRIMACK CONSERVATION PARTNERSHIP

Established in 2012, the Merrimack Conservation Partnership (the Partnership) is a regional alliance of over thirty conservation and planning organizations formed to protect the southern portion of the greater Merrimack River watershed in New Hampshire and Massachusetts. The Partnership uses its collective resources and expertise to preserve, steward, educate and advocate for a sustainable, ecologically healthy and climate-resilient Merrimack River watershed. To support these shared goals, grant programs—privately funded and administered by Partnership member the Society for the Protection of New Hampshire Forests—are available to eligible land trusts, municipalities and state agencies.

Vision of the Partnership: We envision a Merrimack River watershed where everyone benefits from clean air, clean water and expanded access to green space.

Committed to the Watershed: Our Partnership is comprised of individuals and organizations who care deeply about protecting the Merrimack River watershed. Our work aims to create connections and aligned action between all the partners and stakeholders, who represent different disciplines and perspectives.

Centered in Community and Science: We recognize that experience within the community, high-quality data and conservation best practices are all important to lasting progress and we prioritize and integrate each into this work.

Collaboration and Respect: We work collaboratively to protect the watershed by sharing information, leveraging collective resources and working towards common goals. Our work is rooted in respect for the partners, the community, the environment and the watershed.

PLANNING AS A COLLABORATIVE TEAM

The **Merrimack Conservation Partnership (the Partnership, or MCP)** approached The Nature Conservancy to lead the update of the 2014 conservation plan to better reflect community priorities and conservation opportunities within the developed portion of the watershed. The request was based on previous TNC work on other spatial plans, work with community entities and strong presence in both watershed states.

The **Merrimack Conservation Partnership Advisory Committee (Advisory Committee)** was established through volunteer participation of Partnership members. The committee met regularly to guide critical components of the planning process by providing expert input on conservation targets, priority datasets and spatial analysis methodologies. Their expertise ensured technical decisions were grounded in science and aligned with overarching conservation goals. Beyond technical review, members supported community engagement by identifying potential partners and opportunities for project coordination. This structure integrated scientific expertise with local knowledge, enhancing both the analytical rigor and practical applicability of the planning framework.

The Nature Conservancy (TNC) is a science-based, nonpartisan conservation organization with more than 70 years of experience working locally and globally. Since 1951, TNC has worked across states and around the world to partner with communities, advocate for and influence policies that equitably support people and nature and provide the science, tools and resources to work toward solutions. Local teams in Massachusetts and New Hampshire collaborated on this effort to develop, analyze and use the best available conservation science and guide intentional engagement with community. Project leads were Emma Gildesgame, Massachusetts Climate Adaptation Director and Anna Ormiston, New Hampshire GIS Manager and Spatial Scientist. Ally Snell, New Hampshire Community Partnerships Manager, led the community engagement approach. The full list of team members is available in [Appendix 1: Project Team Organization](#).

Individuals selected by local organizations for their deep ties to their respective neighborhoods acted as **community advisors**. As trusted entities, community advisors helped reach a broader subset of residents for data collection and plan engagement.

Liberation Nexus Lab consulted on community engagement, partnership structure and implementation strategy for the plan. Principals Erin Allgood and Emerald Anderson-Ford provided coaching, process review and recommendations to assure community engagement was done in an intentional and inclusive manner. The Liberation Nexus Lab is a consulting firm specializing in custom programs, resources and strategic planning and coaching that focus on shifting hearts and minds towards deep community building and connection.

FB Environmental Associates is an environmental consulting firm committed to the practical stewardship of the natural world. Through science and community collaboration, the firm works to restore and protect ecosystems, focusing on clean water and biodiversity conservation. For this conservation plan, FB Environmental conducted spatial analysis to develop the Community Climate Resilience theme and designed interactive web tools to make the updated conservation plan accessible and actionable. Julia Maine, FBE Project Manager and Coastal Science Lead, provided project management, GIS analysis and web mapping design. Christine Bunyon, FBE Project Manager, Geospatial Services Lead and Water Resource Scientist, provided sourcing, preparation and integration for input data and GIS modeling and spatial analysis. Elliott Boardman, FBE Project Manager, Ecologist and Wildlife Specialist, provided web tool design and creation. Their work advanced GIS analysis with user-focused visualization to help conservation practitioners and municipal decision makers explore spatial patterns, assess vulnerabilities and identify opportunities for resilience and conservation strategies.

PLANNING FOR A HEALTHIER MERRIMACK

In 2010, the Merrimack River was identified by the US Forest Service as “one of the most threatened watersheds in the nation” in terms of projected loss of private forest land over the next twenty years. This designation inspired a broad partnership of environmental organizations and public agencies in New Hampshire and Massachusetts to embark on an ambitious effort to develop a conservation plan that would focus and accelerate land conservation in the Merrimack River watershed. Working together, the group developed a science-driven, consensus-based land conservation plan that integrates the best-available natural resource data with expert judgment to prioritize land protection in the Merrimack River watershed.

Serving as a complimentary study to the existing 2014 Conservation Plan, the 2025 update focuses on a community-informed approach to data collection in the developed areas of the watershed, where the majority of residents live. The updated plan identifies conservation opportunities to improve water quality, climate resilience and access to green spaces. It also identifies specific community climate vulnerabilities in the largest cities along the Merrimack River.

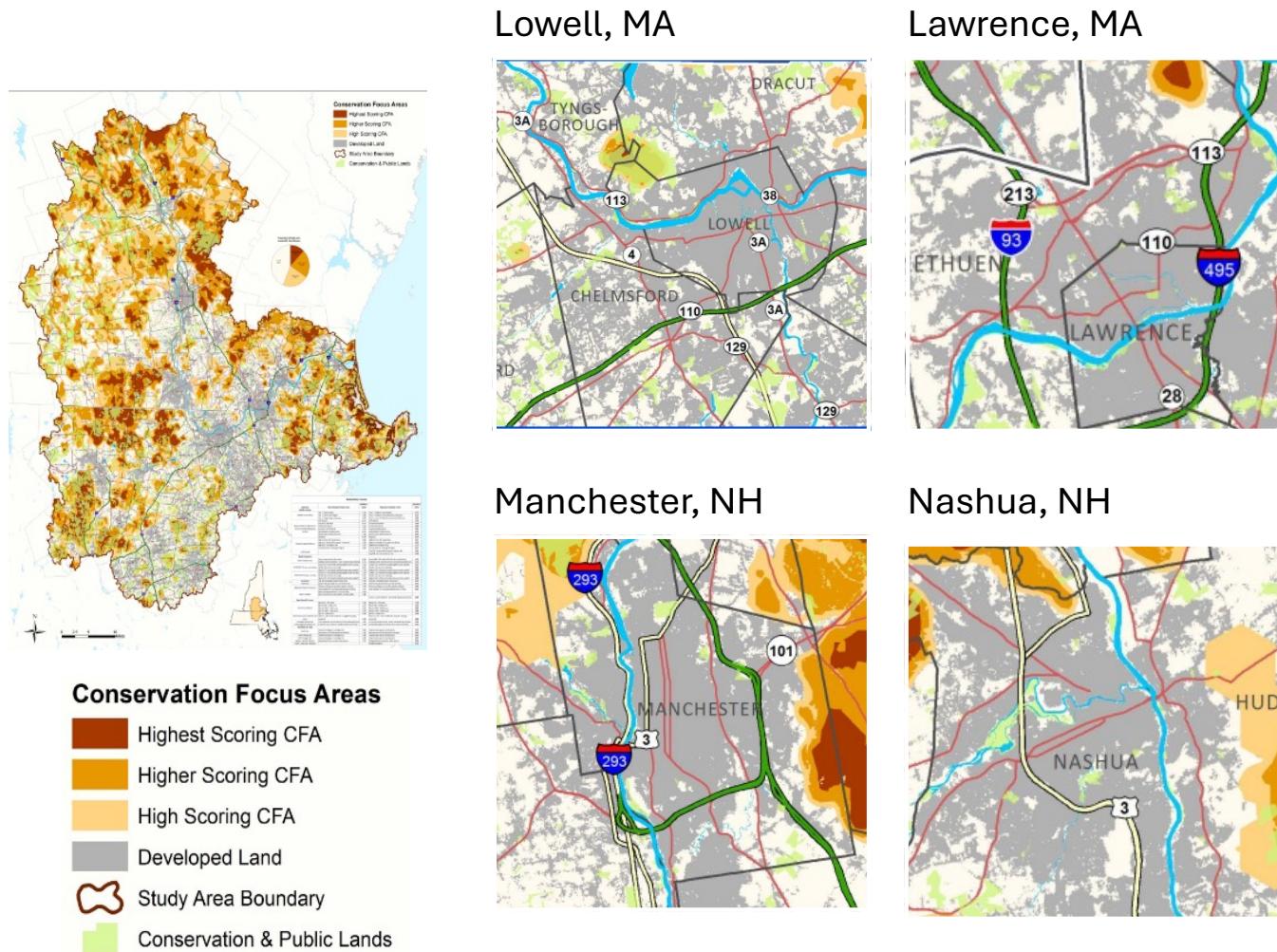
The 2.6 million residents of the Merrimack River watershed are highly dependent on nature, including more than half a million residents who rely on the Merrimack for drinking water. Many watershed towns and socially vulnerable communities are at high risk for flooding and drinking water contamination. Accelerating climate change and pressures of population and development will lead to intensifying storms, increased risks of flooding, water pollution and habitat destruction.

Through science-based and community-driven climate adaptation initiatives, this project identified locations for future efforts that can reduce the risks facing these communities by securing clean and abundant water supplies for a growing population and mitigate risks from increasingly frequent and severe storms.

THE APPROACH

Data Collection: A Community-Informed Approach

The Merrimack Conservation Partnership explicitly requested that The Nature Conservancy incorporate the voices, priorities and needs of Merrimack watershed communities into the updated plan. To do this, the project used a tiered approach to community engagement that started broad, gathering input on issue areas and values and gradually narrowed to specific discussions of neighborhood-scale observations and needs. To allow for the time and deep engagement necessary to build relationships with established community-based organizations and leaders the project team focused this work exclusively in four focal cities along the mainstem of the Merrimack.


The community engagement strategy for the plan update was developed iteratively in response to input from partners and community members, to ensure the creation of a conservation plan that integrates community needs and assets and represents the lived experiences of people within the watershed. Incorporating perspectives from these parties results in a plan that is relevant for more people and provides more opportunities for collaboration between conservation organizations and others working in the watershed.

Selecting Focal Communities

At the outset of the project, the team opted to focus community engagement and relationship building efforts on four major cities along the mainstem of the river: Lowell and Lawrence, Massachusetts and Manchester and Nashua, New Hampshire. What happens within each city significantly influences the river and the health of the river significantly impacts residents of those communities. Though there are more than four communities within the watershed, these four are the largest along the mainstem and were largely excluded from the 2014 plan (see gray areas in Figure 1). Manchester and Nashua are the largest two cities in New Hampshire by population¹ and Lowell and Lawrence are the

¹ Annual Estimates of the Resident Population for Incorporated Places in New Hampshire: April 1, 2020 to July 1, 2024 (SUB-IP-EST2024-POP-33). Source: U.S. Census Bureau, Population Division, Release Date: May 2025. Accessed via <https://www.census.gov/data/tables/time-series/demo/popest/2020s-total-cities-and-towns.html>

two largest Massachusetts cities along the Merrimack mainstem². Together, the four cities are home to more than 410,000 people. Though the community engagement efforts were focused on these four cities, the emergent topics in the community climate resilience themes (flooding, heat severity and green space condition) were evaluated using other data sets for the entire watershed.

Figure 1: The focal communities were excluded from the 2014 analysis because they are densely developed. (Map by: Merrimack Conservation Partnership)

Focusing efforts geographically allowed the project team to build stronger relationships with local community-based organizations, learn from residents and elevate targeted community conservation priorities and themes. In choosing the four largest municipalities along the river, each one with a rich cultural history and legacy of industrialization, the project team could focus their efforts to fill in the most significant gaps from the earlier version of the conservation plan. Over the course of two years, the project team approached work in these communities through the lens of careful and intentional trust building. The project team began with conversations and interviews of representatives from municipalities and environmental organizations, many of which had existing relationships with the Partnership or TNC (see Figure 2). Coupled with targeted polling in the four focal cities, these initial efforts helped the project team narrow the scope of the plan to topics that were not heavily covered in existing plans and studies within the watershed, thus not replicating existing work.

² Annual Estimates of the Resident Population for Incorporated Places in Massachusetts: April 1, 2020 to July 1, 2024 (SUB-IP-EST2024-POP-25). Source: U.S. Census Bureau, Population Division, Release Date: May 2025. Accessed via <https://www.census.gov/data/tables/time-series/demo/popest/2020s-total-cities-and-towns.html>

Community Engagement Approach & Methods

Figure 2: The community engagement approach for this project started broad and continually narrowed in focus to gather deeper, more specific insights from individual members of the community.

1. **Polling:** Polling focal-community residents helped the project team better understand the issues and impacts most important to residents. (See polling results in [Appendix 2: Polling Findings and Data](#))
2. **Interviews:** Initial and ongoing conversations with existing municipal and organizational partners in the region provided important context around existing activities in the watershed and in focal communities. This included ongoing and emerging projects, opportunities to plug into existing efforts and recommendations of other organizations and individuals to engage in the project.
3. **Tabling:** Direct engagement with residents at fairs and festivals to gather spatially explicit information about their experiences of flooding, green space, heat and tree coverage within their communities. (See event images in [Appendix 3a: Input from Community Events](#)).
4. **Community Mapping:** Dedicated community mapping events, hosted in partnership with trusted local organizations, focused on gathering detailed information from residents.

Municipal and Organizational Partner Interviews

Between the summer of 2023 and late 2024, the project team conducted interviews and informal discussions with key community advocates—local decision makers and leaders in municipal, conservation or organizational roles—in the focal cities. Conversations with these municipal and organizational partners often led to recommendations of additional contacts and partners for the project team. These conversations helped shape the exploratory methodology for community data collection as well as informed and alerted key partners to the project's intentions and work in the watershed, which helped eliminate confusion and unintended duplication of efforts. A summary of interviews, events and meetings, along with information about our approach, can be found in [Appendix 3: Community Engagement](#).

Key themes from Municipal and Organizational Partner Interviews:

- Most of the focal municipalities had recently revised their master plans, which served as key starting points for understanding priorities and opportunities relative to conservation and climate adaptation. Nashua, NH, had recently concluded a multi-year effort to develop the Livable Nashua plan, which incorporated many aligned conservation, climate mitigation and climate adaptation themes along with a dashboard and quarterly newsletter tracking progress.
- Municipalities in Massachusetts received support for project implementation from the state-wide Municipal Vulnerability Preparedness program and had established partnerships with local non-governmental and community-based organizations to provide further support.

All the focal municipalities expressed concerns around increased flooding, stormwater management and as a result, water quality issues.

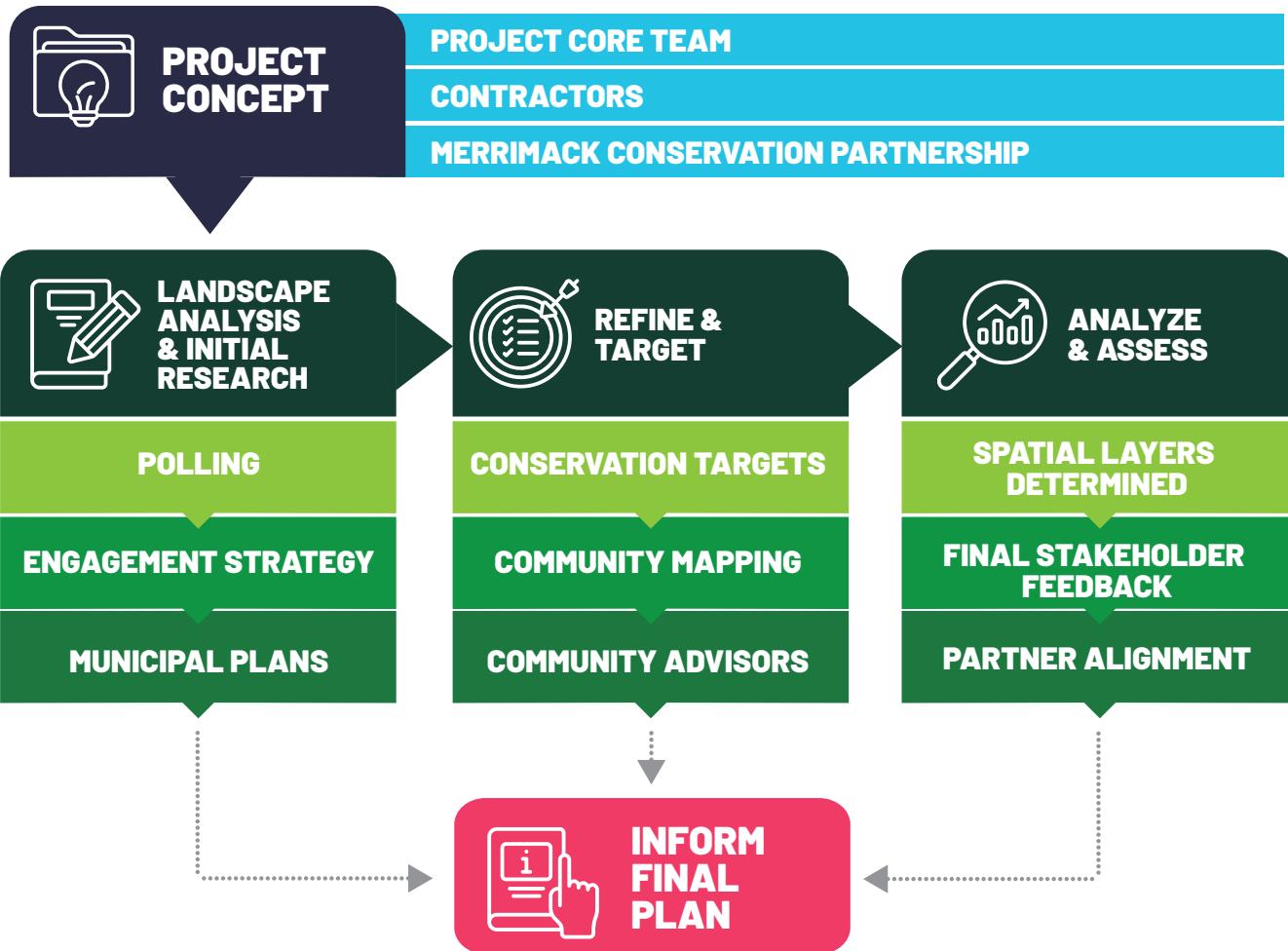
- Community members and community leaders expressed concerns about lack of tree coverage and the condition of existing urban trees.
- Municipal and organizational partners alike expressed a desire to reach a greater diversity of residents to be involved in local planning and civic efforts, yet noted that they lacked the resources, capacity and knowledge to obtain sustained engagement. This presented the project team with a clear opportunity to focus efforts on building trust locally to drive toward deeper levels of resident engagement in the planning process.

These themes, coupled with polling data, helped the project team focus on the scope of research and better communicate requests and outcomes with engaged community members.

NOTE: Conversations yielded several concerns, such as rates of PFAS contamination, trash and litter, and other forms of non-source point pollution in the Merrimack, which were deemed outside of the scope of this plan and the Partnership's scope of work and influence.

Community-Based Organization Engagement

Obtaining community-sourced data and information was a core component of the project team's approach to expanding the coverage of the Merrimack Conservation Plan to the developed areas of the watershed. While the project team had existing relationships and established reputations in some of the focal communities, the team sought out new and expanded relationships with key organizations that were better positioned to connect with a wider subset of community members. The approach of building relationships and partnerships with small, localized community-based organizations (CBOs) also reinforced local leadership roles in decision making. Many of the organizations and people working on related issues within the watershed are affiliated with small CBOs and have deep knowledge of and connections with people and their neighborhoods. Uplifting locally identified, place-based expertise is essential to developing effective local strategies and solutions.


These local CBOs (full list in [Appendix 3b: List of Key Stakeholder Interviews](#)) have the knowledge, solutions and constituencies impacted by the intersecting issues of public and environmental health, housing and food insecurity and other related concerns. Building these partners into the planning process resulted in a plan that is relevant to a variety of sectors and breaks down traditional silo structures to create more opportunities for radical collaboration between conservation and public health, affordable housing and municipal leadership.

The project team used a "snowballing" approach to identify and connect with CBOs within the watershed. During initial interviews with community advocates, the project team asked for connections to other individuals and organizations doing interesting and related work in the watershed. They then contacted those entities for initial conversations and asked for more recommendations, thus building upon the existing local knowledge base and moving through networks at the speed of trust.

During and after these initial conversations, the project team regularly met with CBO representatives to assess their interest and capacity in playing an ongoing role in the project. Through this dialogue with local leaders, the team identified a need for, and supported, paid community advisors to assist with outreach, education and engagement in the community climate resilience data collection. These community advisors provided invaluable community expertise, opening channels of communication and partnership that previously were not available to the project team.

Community leader and partner engagement leads to more durable outcomes within urban conservation projects. The project team took time to foster relationships of trust between the Partnership and community leaders, that resulted in guiding recommendations and the identification of key community assets, which allow the conservation plan to build on existing work and local knowledge. The plan's depth of community voice is indicated by the more than 700 individual community-sourced datapoints included in the final planning tool.

The project team employed an exploratory methodology for data collection in order to facilitate an organic and authentic approach to community engagement that prioritized conservation and climate adaptation goals. The methodology described in Figure 3 allowed for a continually adaptive approach to incorporate community insight and priorities, transformed to spatial datapoints, which helped steer the mapping process toward a co-creation model of conservation priorities.

Figure 3: Utilizing an exploratory methodology allowed the project to not only integrate community and partner feedback but iterate the data collection approach based on community need and priorities- making this a truly collaborative research approach.

THE COMMUNITY ADVISOR MODEL

The approach to engagement with community members relied on relationships with local leaders and advocates to tailor custom approaches for each focal community.

In New Hampshire, the project team collaborated primarily with [Granite State Organizing Project](#) (GSOP), a faith-based, grassroots nonprofit organization with chapters in Manchester and Nashua, NH that focuses on strengthening communities to effect change. GSOP was selected as an effective partner given its alignment with the project's geographical and community-led approach. GSOP helped identify and support two community advisors in Manchester and one in Nashua, all of whom represent different communities and perspectives.

In Massachusetts, the team worked with a range of nonprofit partners and messengers to connect with Lowell and Lawrence communities. Staff from these organizations advised on project priorities and data, supported tabling and outreach opportunities, co-hosted or cross-promoted community mapping dinners in winter 2025, provided valuable feedback on the plan and approach and directly engaged with residents during their other programming. These organizations included:

- [Lowell Parks & Conservation Trust](#): a local land trust "working to improve the quality of life for the people of Lowell through education and conservation of parks." Lowell Parks and Conservation Trust is a long-time member of the Partnership.

- [Mill City Grows](#): a food justice organization rooted in Lowell that creates gardens, markets and educational opportunities for all Lowell residents.
- [The Merrimack Valley Project](#): a coalition of community organizers working in Lowell, Lawrence and surrounding cities to “unite and organize faith, labor and community leaders & organizations towards social, racial and economic justice.”
- [Groundwork Lawrence](#): a nonprofit that builds community-based partnerships to empower people, businesses and organizations to promote environmental, economic and social well-being. The project team was able to build off an existing relationship with Groundwork Lawrence.

Each community advisor relationship was tailored to meet the needs and goals of each party and ranged from short-term or one-off collaborations to longstanding collaborative relationships. The project team provided compensation through ongoing partnership agreements for longer-term relationships and those that required the partner to contribute significant time or other resources. Community advisors played a critical role in creating a plan that reflects community realities and provided critical context about ongoing work, challenges and dynamics in their community. A broader subset of residents were more likely to attend an event co-hosted and shaped by these known entities than by the lesser-known Merrimack Conservation Partnership or TNC.

Figure 4: Connecting with and learning from residents in each community at fairs and festivals during summer 2024. (Photo credits, clockwise from top left: Emma Gildesgame/TNC, Meredith Hatfield/TNC, Emma Gildesgame/TNC, Anna Ormiston/TNC)

Inclusive Community Engagement Practices

Throughout the project, the project team endeavored to implement several practices to welcome all community members and encourage a wide range of participation and input. These practices included several tactics and considerations, such as:

- Work with existing organizations, structures and opportunities to host mapping sessions and other project engagements during a partner group's regularly scheduled meeting. This included evening and weekend work to meet community members when they were available.
- Offer a meal and childcare for any in-person sessions that were longer than an hour, particularly when they took place after work hours.
- Compensate community members for their time by providing generic gift cards for in-depth work that required time and effort, such as the community mapping sessions. This helped offset opportunity costs incurred in participation (such as needing to take unpaid leave from a job or transportation costs) and emphasized the value of community members' time, lived experiences and knowledge.
- When hosting meetings and events, select a venue that meets ADA accessibility standards and proactively ask participants if they require language interpretation or any other accommodations to allow all participants the chance to share their knowledge. When organizing events, be sure to budget in advance for these services.
- When promoting events, advertise in many different venues and platforms such as email, community calendars, posted flyers and partner organization newsletters. For different communities, the project team shared information on WhatsApp group chats, through school newsletters and apps and other means as recommended by community advisors. Offer multiple ways to RSVP, such as an email address, QR code and a phone number.
- If possible, offer a variety of formats to share information- a slideshow coupled with printouts (in multiple languages) so people can readily absorb the information.
- Always offer a "call to action" of the audience such as a post-event survey or request to sign up for the next event or a newsletter.
- When asking community members for their participation, feedback and involvement, it is essential to craft a feedback loop in your outreach. This can look like follow-up emails, presentations or a regular correspondence on project milestones like a newsletter.

Investing in relationship building with local organizations, community leaders and local government representatives early in the data collection process is an essential component of building trusting, mutually beneficial relationships. It is through these relationships that conservation professionals can help create conditions for all community members' experiences and expertise to be integrated into a truly representative plan. Durable conservation outcomes only occur through careful and sustained community dialogue; these experiences help inform and reinforce future projects and initiatives.

Photo credits: From left, Loren Dowd/TNC, Photo credit: Emma Gildesgame/TNC, Crystal Paradis-Catanzaro/TNC

Polling

As a first step in data collection, the team conducted watershed-wide polling to assess residents' perceptions of water quality in the river and the watershed, to learn more about where community members get information and what sources they trust and to assess their understanding of how to address environmental and climate concerns at the local, state and federal levels of government.

Polling aimed to collect perspectives of people who were not already engaged in environmental or conservation organizations or decision making within the focal communities. Professional research teams New Bridge Strategy and FM3 Research conducted a telephone and online survey among 400 low- and middle-income residents³ in Lawrence and Lowell, MA and Manchester and Nashua, NH, from April 13-26, 2023.

Findings identified a wide range of concerns in the area, including cost of living, crime and gangs and the quality of public schools. However, when asked specifically about the effects of climate change, **over six-in-ten residents (65 percent) reported personally experiencing the effects of climate change;** more than 7-in-10 said that they had been personally impacted by flooding or extreme heat. (Refer to [Appendix 2: Polling Findings and Data](#) for full polling results and analysis). Other findings include:

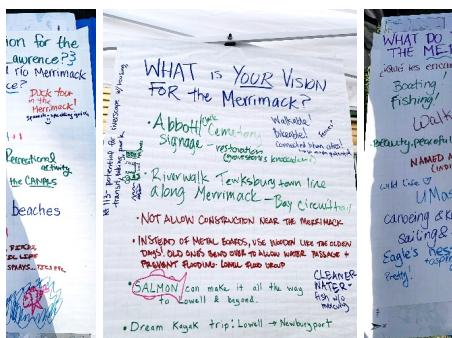
- Rivers are important cultural and social elements of each of the four communities, with more than half of residents visiting local rivers at least once a month. Eighty-two percent of residents described the rivers as fairly or very "important to my city;" 74 percent described the rivers as fairly or very "important to me personally."
- One in three residents polled said that extreme heat in their city had gotten worse over the last 5-10 years. In all four communities, residents with the lowest incomes were more likely to say that there were too few outdoor places to cool off during the hottest summer days. Residents of color were more likely to have experienced negative impacts of flood and extreme heat.
- When asked open-ended questions about recommendations to improve local rivers and the natural areas around them, residents frequently mentioned the need for more cleaning and maintenance of these areas.
- Scientists, local teachers and local environmental organizations were the most trusted messengers about issues relating to local rivers and natural areas.

Participation in Community Events

The project team participated in existing community events at the request of community partners to build trust, increase project visibility and learn from residents in the focal communities. Many of these events served constituencies that did not regularly engage in conservation planning, thus familiarizing new audiences with the project and approach. The project team, with input from CBOs and other partners, developed a way to solicit feedback from the community in an informal setting (such as a community festival table or during pre-existing community meetings), which allowed residents to share their experiences in a variety of ways (Figure 4).

Gaining community information during these sessions employed a two-pronged approach: thematic maps which gathered specific information from residents about their neighborhoods and interactive and dynamic exhibits that drew attention and inspired curiosity about the watershed. As these were the first initial public engagements, the project team used a mix of targeted questions ("where do you see flooding?") and open-ended questions ("what is YOUR vision for the Merrimack River?") that achieved two goals:

1. Create a baseline understanding of the three community climate resilience themes across all four focal cities
2. Crowdsource ideas, themes and concepts to further investigate within the plan.



³ Income requirements varied by city based on cost of living and other factors. Lawrence - Under \$50,000; Lowell - Under \$70,000; Manchester - Under \$80,000; Nashua - Under \$90,000

The interactive exhibit was an [EnviroScape watershed model](#), which helps people explore the connections between actions on land and impacts on water quality (see Figure 5). This model, which uses food coloring and sanding sugar to represent nonpoint source pollution and sponges to represent nature-based solutions to reduce flooding and pollution.

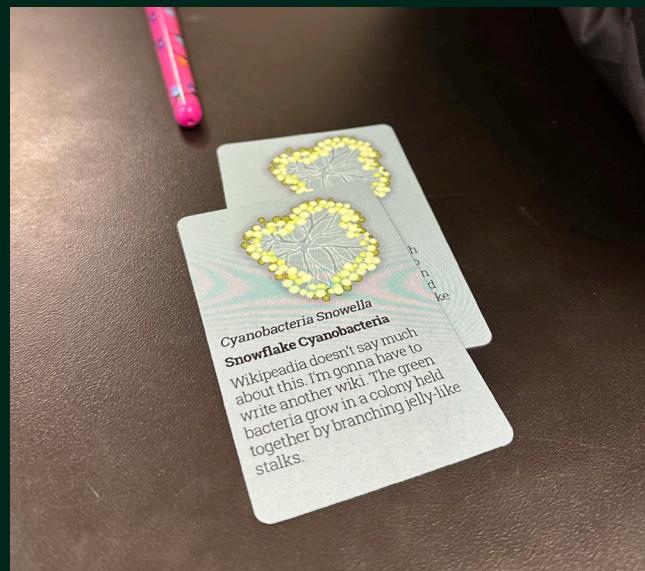
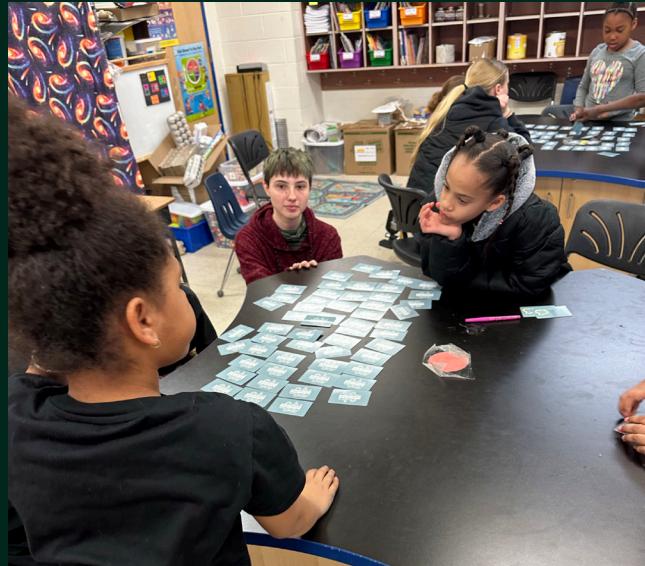
Figure 5: Project co-lead Anna Ormiston talks with a Lowell resident about watersheds using the EnviroScape watershed model. Photo credit: Emma Gildesgame/TNC

The project team gathered input on three types of environmental conditions using large format maps, which showed flood risk, heat severity and green spaces within each focal city. Community members then used stickers to indicate where they had experiences of flooding or extreme heat and places where they wish there were more or improved green spaces within their community. They also added additional open-ended comments with ideas, notes and concerns about the topics using flip charts (see selected flip charts in Figure 6 and refer to [Appendix 3a: Input from Community Events](#) to see more information gathered at community events.)

Figure 6: Open-ended responses to questions about people's perceptions of and relationship to the Merrimack River during tabling events in 2024. Photo credit: Emma Gildesgame/TNC

Community event participation increased overall visibility of the project and helped engage residents with the roles climate resilience and water quality play in their day-to-day lives. Event tabling also provided a critical opportunity to advertise future engagement events to a wider audience, such as community mapping sessions, thus ensuring more participation. Ultimately the project team participated in seven community events and fairs, reaching over 380 individuals in the focal communities.

Gaining Youth Perspectives in Conservation Planning



by Megan LaTour, TNC

Throughout the community partnership process, the project team regularly heard from partners about the need to involve youth in meaningful conservation planning. A series of key partner conversations ultimately led to the development of a novel data collection and education project with relationship-based learning organization Unchartered Tutoring, founded by Amber Nicole Cannan. Her vision—to empower students as scientists and stewards of their communities—has shaped a program that brought watershed science to 60 students across four Title 1 schools in Manchester and Nashua and allowed 3rd-5th graders the opportunity to share their community climate resilience experiences and perspectives via map-making (Appendix 3d: Unchartered Tutoring - Youth Conservation Maps).

Through an eight-week afterschool series, students engaged in hands-on environmental science, including water filtration experiments, moss microscopy and maybe most notably, mapping exercises that connected their experiences to broader conservation goals. Students identified and recorded flooding zones and tree locations in their own neighborhoods. This data was then incorporated into the plan, ensuring that youth perspectives and community voices were meaningfully represented in shaping the future of their neighborhoods.

The program's success is evident not only in the data collected, but in the students' transformation—from curious observers to confident community scientists. The chance to contribute to the plan was the opportunity that the team at Unchartered Tutoring needed to enhance environmental science education in their existing curriculum while providing meaningful opportunities for some of the communities' youngest residents and their families to identify conservation priorities.

Photo credits: Ally Snell/TNC

Community Mapping

After collecting key climate adaptation insights from community members at community events, public meetings and festivals, the project team and community advisors co-organized a series of community mapping events in each focal city. The mapping events were developed to allow community members to think more deeply about their perceptions and experiences with community climate resilience in their communities. A custom community mapping tool ([Appendix 3c: Community Mapping Methods & Facilitators Guide](#)) was informed by several existing tools and frameworks from Asset Based Community Development⁴ frameworks, Participatory Action Research⁵ principles and Design Thinking⁶.

To ensure that the data collected during the community mapping events matched the same questions posed to community members during the tabling events, the project team focused on three key topics to be explored in the workshop:

1. Experiences with flooding and ranking the severity/regularity of the flooding.
2. Observations of areas with or without tree coverage (as a proxy for areas of high heat) and the rate of tree coverage from minimal to high.
3. Awareness of green spaces (parks, forests, trails, community gardens, playgrounds) based upon past visitation and the condition of these green spaces (poor to excellent).

All questions were formulated to encourage participants to draw upon their own perceptions and experiences with these topics. Participants were asked to place color-coded dots on maps for each topic and were then provided worksheets to link the dot to more information including location details, qualitative information and any other notes/commentary. To make the activity accessible to all community members, the mapping and worksheets were done on paper and later digitized and transcribed into GIS data forming the basis of the community climate resilience layer in the plan. The workshops were intentionally done in this analog manner based on guidance from community advisors to address varying levels of fluency and familiarity with digital technology, particularly spatial tools. Transcribing this information added additional time to the data processing but made the in-person events significantly more engaging and accessible. Ultimately this methodology yielded over 700 individual community-submitted data points within the watershed. The analysis of this layer included ranked severity of the climate topics experienced and the frequency an issue or location was mentioned. Further information on the Community Climate Resilience theme is provided in the Spatial Analysis Results, and data processing methods are detailed in [Appendix 4: Spatial Methodology](#).

Throughout the fall and winter of 2024-2025, the project team conducted six community mapping workshops in the four focal cities, with over 250 participants. This included one modified mapping workshop delivered to over 70 high school students at Manchester West High School as part of their Career Day event. Participants in mapping events represented a cross-section of neighborhoods, experiences, demographics and socio-economic statuses. In all four communities, the mapping exercises were simultaneously conducted in several languages, representing large communities speaking English, Spanish, Swahili, French, Vietnamese and American Sign Language. Refer to [Appendix 3a: Input from Community Events](#) for highlights from these sessions.

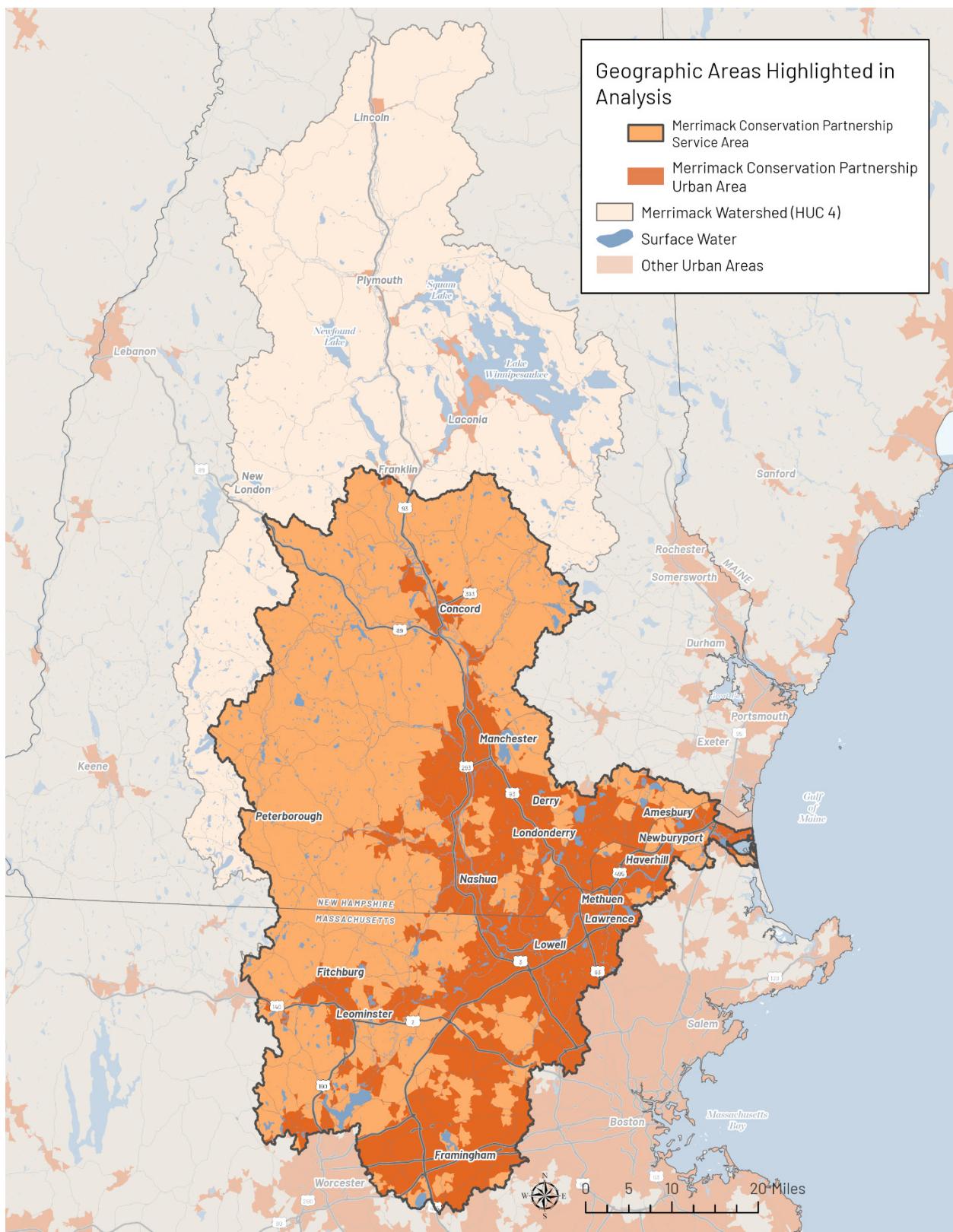
The Community Advisors in both states were instrumental in helping forge relationships with neighborhood groups and local families thus greatly increasing interest in the project and turnout at the mapping workshops. The logistics of the events were shaped, promoted and implemented through guidance provided by the community advisors. The collaboration with community advisors led to high levels of participation from a wide range of community members and largely successful and engaging events.

⁴ <https://abcdinstitute.org/>

⁵ Kindon, S., Pain, R. & Kesby, M. *Participatory Action Research Approaches and Methods: Connecting People, Participation and Place* (Routledge, 2007)

⁶ <https://dschool.stanford.edu/innovate/tools/get-started-with-design>

Photo Credit: Meredith Hatfield/TNC


SPATIAL ANALYSIS RESULTS

The spatial analysis presented here reflects input from Merrimack Conservation Partnership members and the broader community. It is organized around four key themes: community climate resilience, wildlife habitat and connectivity, working lands and water resources. Each theme identifies priority areas for conservation and restoration projects that address specific ecological and social needs. When considered together, these themes reveal locations where projects can deliver multiple benefits for both nature and people. For details on the spatial methodology used in this analysis, please see *Appendix 4: Spatial Methodology*. To access the data through the interactive web viewer, please visit: www.nature.org/merrimack

MERRIMACK CONSERVATION PARTNERSHIP SERVICE AREA

Figure 7 illustrates the Merrimack Conservation Partnership Service Area (The MCP Service Area), which spans the lower portion of the Hydrologic Unit Code (HUC 4 Merrimack Watershed.) This area follows the Merrimack River mainstem from Franklin, New Hampshire, to its outlet at the Gulf of Maine in Newburyport, Massachusetts. The Partnership's focus on the lower Merrimack complements work by other regional partnerships in the upper watershed, helping ensure that conservation and resilience efforts are distributed across the entire basin. The MCP Service Area encompasses a distinct rural-to-urban gradient, reflecting diverse land use and development patterns. To capture this variation, analyses incorporated U.S. Census-defined Urban Areas⁷, referred to throughout this report as the MCP Urban Area. Understanding this gradient is critical because more developed areas present unique challenges and opportunities for climate resilience. These locations often combine infrastructure vulnerabilities with potential for nature-based solutions, making them priority areas for strategies that help communities adapt to climate change.

⁷ Federal Geographic Data Committee. "Urban Areas." GIS data, ArcGIS Hub, Year. <https://gisnation-sdi.hub.arcgis.com/datasets/fedmaps::urban-areas/explore>. Accessed January 2025.

Figure 7: This map illustrates the MCP Urban Area (dark orange) and MCP Service Area (orange) in relation to each other and the entire HUC 4 Merrimack Watershed (light orange). Other urban areas are depicted on the map for reference.
Map credit: Anna Ormiston/TNC

WILDLIFE HABITAT AND CONNECTIVITY

The Wildlife Habitat and Connectivity theme highlights priority areas for conservation action, focusing on the protection and restoration of priority habitat blocks, resilient landscapes and wildlife corridors. By synthesizing geospatial data on prime habitat, wildlife corridors and landscape resilience and connectivity, the results pinpoint focus areas where targeted interventions can most effectively support biodiversity and ecosystem resilience. These insights are intended to guide practitioners in making informed decisions about where to concentrate conservation resources to maximize ecological outcomes and long-term landscape functionality.

Figure 8 shows the total area designated for Wildlife Habitat and Connectivity within Merrimack Conservation Partnership's Service Area (MCP Service Area). Table 1 further delineates how much of this area overlaps with existing conservation lands, areas at low risk of conversion (such as surface waters and the wettest wetlands) and areas considered vulnerable to conversion. The total area of Wildlife Habitat and Connectivity focus areas account for 49 percent of the MCP Service Area (Figure 7 and Table 1). Of that 49 percent, 31 percent are conserved (GAP 1-3 and State Board and State Trust Lands). Of the remaining 69 percent of the Wildlife Habitat and Connectivity focus areas, approximately four percent are water resource types considered at low risk of conversion from a natural condition to a developed condition. Sixty-five percent of the Wildlife Habitat and Connectivity focus areas are vulnerable (Table 1).

Twenty-three percent of the Wildlife Habitat and Connectivity focus areas are within the census-defined urban areas (MCP urban area) of the Merrimack Conservation Partnership's service area (Table 1). While 23 percent of the focus areas within the census defined urban areas are protected, 68 percent of those urban focus areas are vulnerable to development with eight percent being undevelopable. Using updated input datasets that emphasize wildlife corridors and large habitat blocks within the more developed portions of the Merrimack Conservation Partnership service area, the plan identified a critical opportunity to enhance landscape connectivity. Specifically, there is potential to protect pathways for wildlife movement across developed areas, linking them to larger, intact habitat blocks beyond the more densely developed areas. Figure 9 provides a visual representation of these focus areas within the MCP Urban Area and their relationship to the Merrimack River mainstem and adjacent high-quality habitat corridors.

The four focal communities can help maintain wildlife corridors, particularly along the Merrimack and Nashua Rivers.

As described in Table 2, the four focal communities—Manchester, Nashua, Lowell and Lawrence—play a critical role in maintaining wildlife corridors, particularly along the Merrimack and Nashua Rivers. Wildlife Habitat and Connectivity Focus Areas within these cities represent a small proportion of the MCP Urban Area (Manchester: three percent, Nashua: two percent, Lowell: one percent, Lawrence: 0.3 percent), yet they contain essential linkages between large habitat blocks. Table 2 also illustrates variation in conservation status: Manchester and Nashua have the highest acreage of protected lands (26 percent and 34 percent, respectively). Vulnerability remains significant across all cities, with 57 percent of Manchester's focus areas and 55 percent of Nashua's classified as vulnerable, compared to 37 percent in Lowell and 43 percent in Lawrence. Targeted conservation in these vulnerable areas would strengthen regional connectivity and link large priority blocks across the region.

Figure 10 depicts how the focal communities serve as critical linkages between urban wildlife corridors and larger habitat blocks in the MCP Service Area. Table 2 details that about three percent of Wildlife Habitat and Connectivity Focus Areas lie within Manchester, NH, which includes a critical corridor along the Merrimack River linking habitat blocks in and around the city. In Nashua, NH, over 2,500 acres of Wildlife Habitat and Connectivity Focus Areas—representing 55 percent of the city's total—are vulnerable to conversion. Priority wildlife corridors identified by the New Hampshire Fish and Game's 2021⁸ analysis traverse Nashua, linking large forest blocks to the southwest, north and beyond. While Mine Falls Park secures a core segment of this network, opportunities remain to conserve or actively manage adjacent corridors that sustain ecological connectivity. In Lowell and Lawrence, MA, a significant habitat block along the Merrimack River presents restoration potential to reinforce regional connectivity.

⁸ New Hampshire Fish and Game Department. "New Hampshire Wildlife Corridors." GIS data, ArcGIS Online, Year. <https://nhfg.maps.arcgis.com/home/item.html?id=3215a291a4db409c8a0fc2436fc3b8b2>. Accessed August 2024.

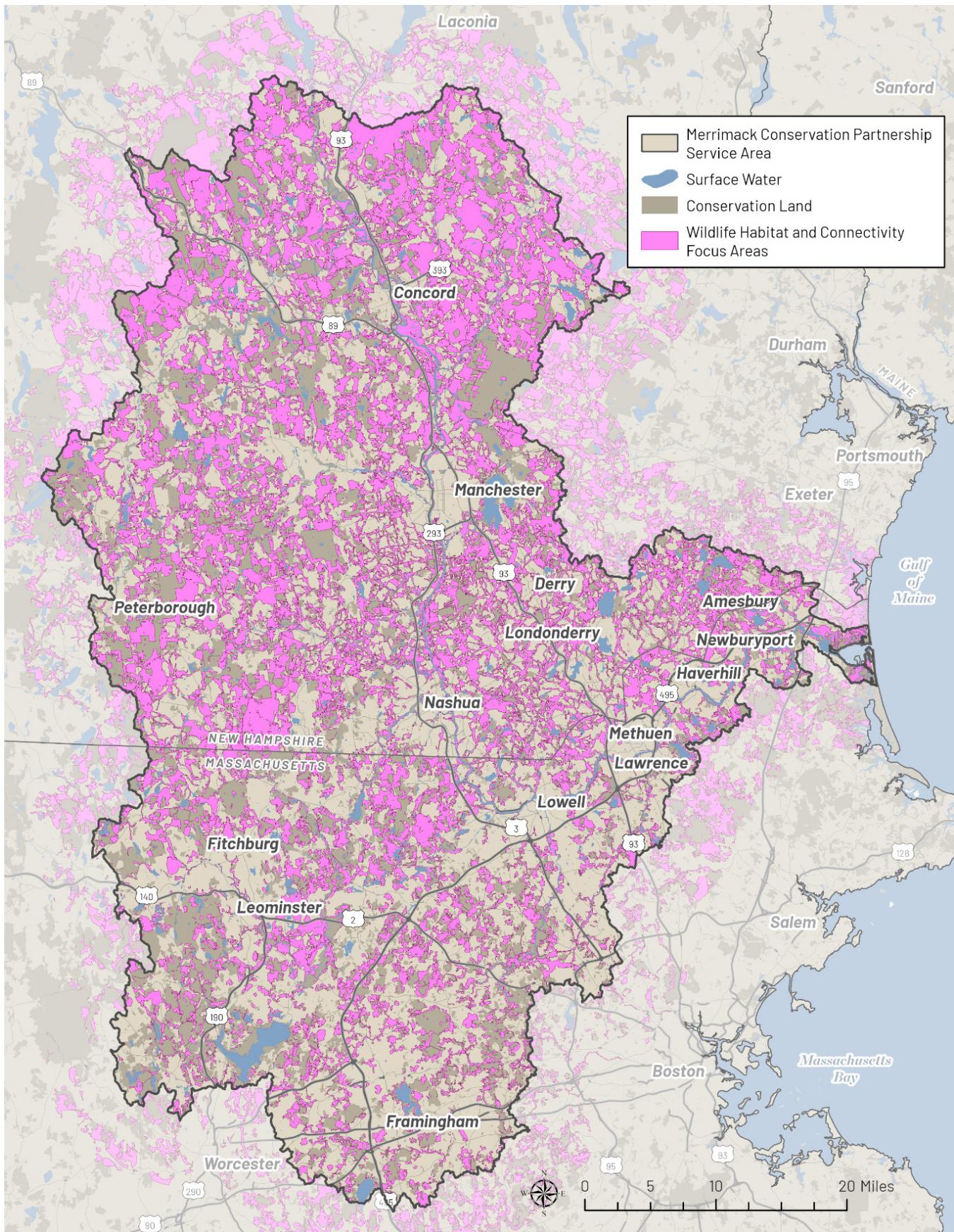
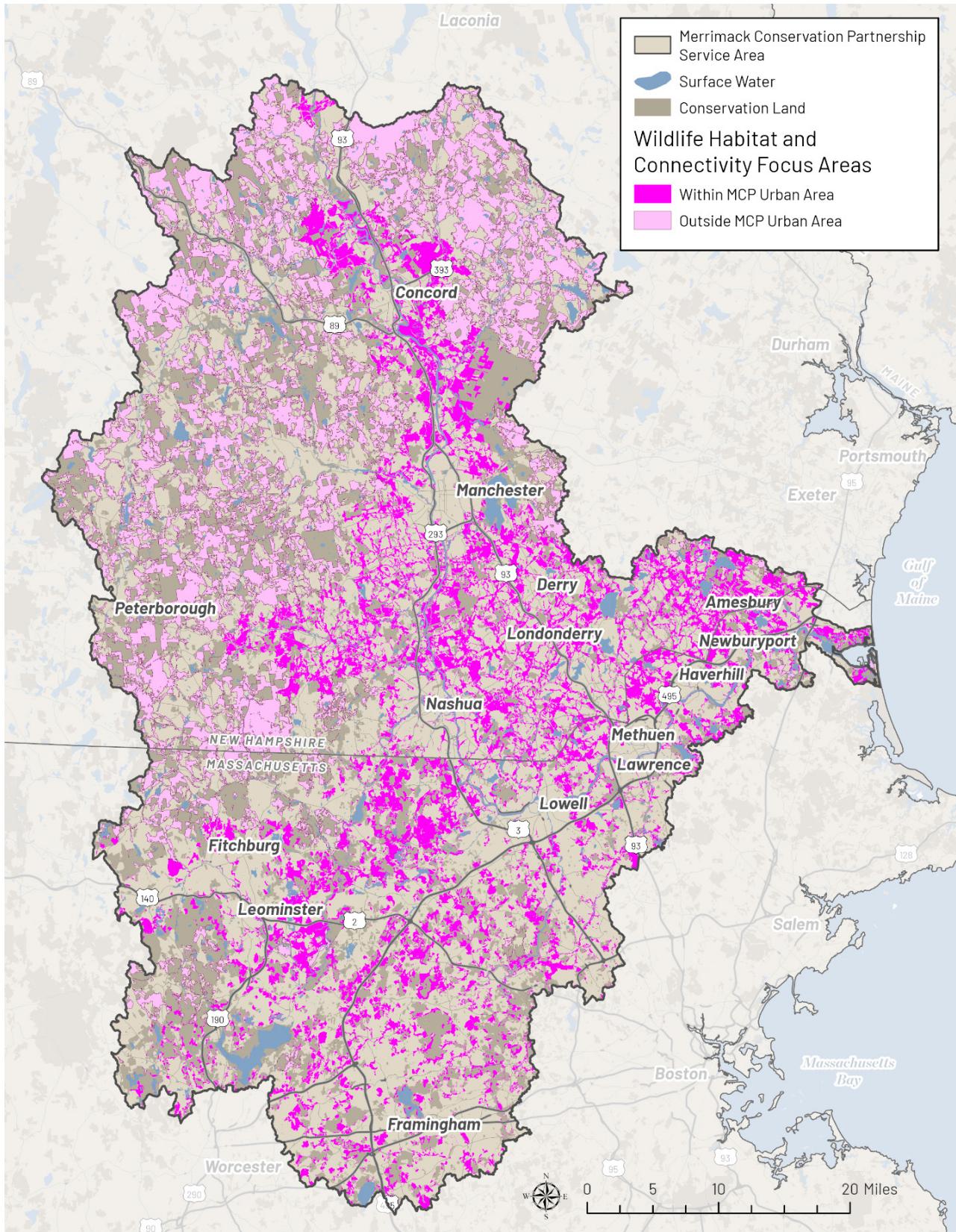



Figure 8: Wildlife Habitat and Connectivity Focus Areas (pink). Map credit: Anna Ormiston/TNC

Figure 9: Map depicting Wildlife Habitat and Connectivity focus areas classified by spatial relationship to the MCP Urban Area: areas within the urban boundary (bright pink) and areas outside the boundary (light pink). The urban area exhibits a corridor network structure that underscores its critical role in facilitating wildlife movement and maintaining ecological connectivity. To see this dataset in more detail, please visit the full interactive map & plan at www.nature.org/merrimack

Map credit: Anna Ormiston/TNC

Figure 10: Map depicting the spatial extent of Wildlife Habitat and Connectivity Focus Areas (pink) within the focal communities. Map credit: Anna Ormiston/TNC

Table 1: Conservation and vulnerability status of Wildlife Habitat and Connectivity focus areas within the MCP Service Area and MCP Urban Area. Percentages indicate the proportion of each category relative to the total focus area, highlighting the extent of protected, undevelopable and vulnerable focus areas.

Conservation and Vulnerability Status of Wildlife Habitat & Connectivity Focus Areas		
Conservation and Vulnerability Status	MCP Service Area Acres (percent)	MCP Urban Area Acres (percent)
Already Protected Focus Areas (GAP 1-3; State Board Lands and State Trust Lands)	281,895 (31%)	49,655 (23%)
Undevelopable Land within Focus Areas (not protected)*	43,350 (4%)	18,118 (8%)
Vulnerable Focus Areas	593,961 (65%)	145,936 (68%)
Total Wildlife Habitat and Connectivity Focus Areas	919,206 (49% of total MCP service area)	213,709 (23% of total Wildlife Habitat Focus area)

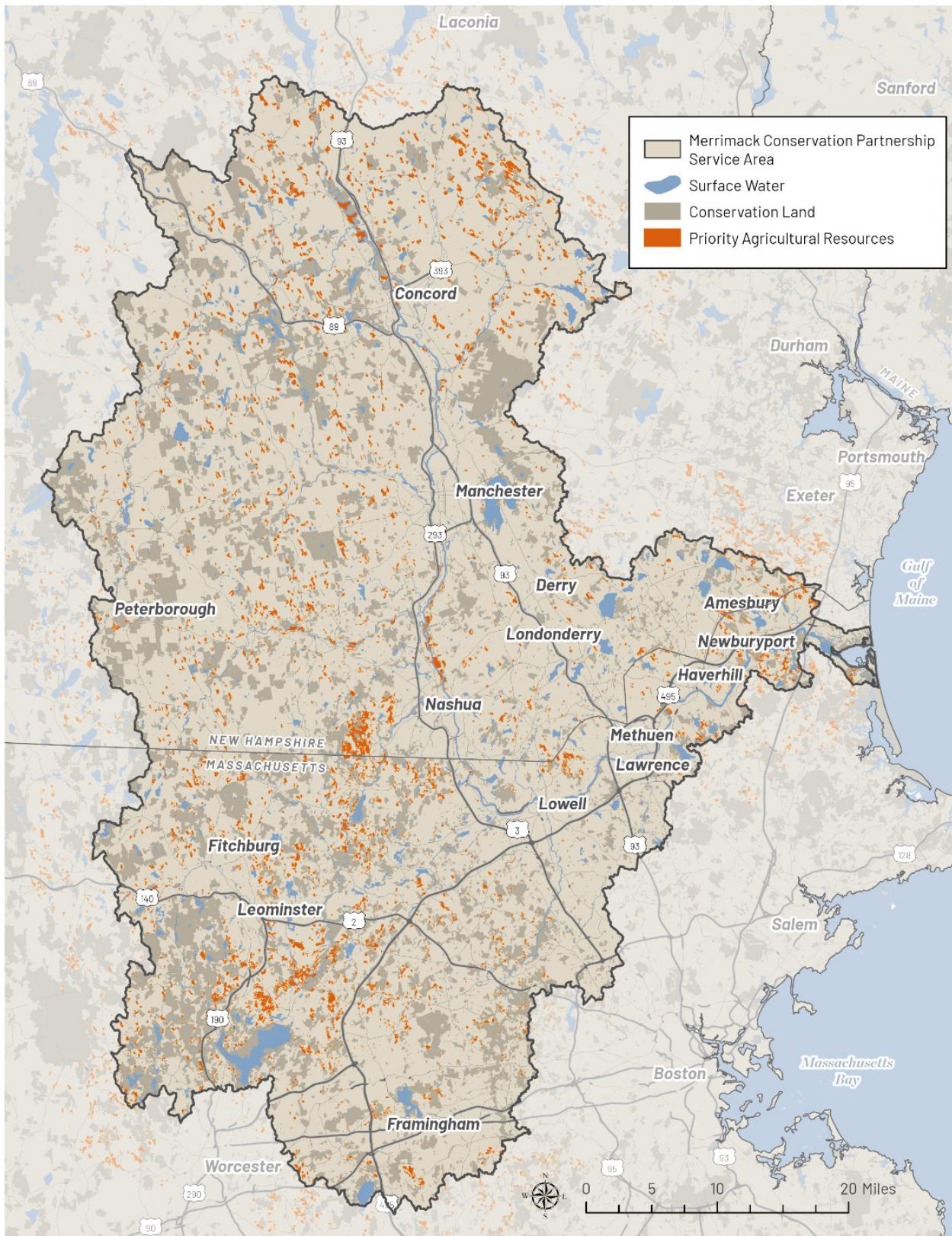
*NOAA Coastal Change Analysis Program (C-CAP) Regional Land Cover Database (NOAA Office for Coastal Management 2021) classes used for portion of Coastal Conservation Focus Areas that are surface water or undevelopable wetland include the following: Palustrine Emergent Wetland, Estuarine Forested Wetland, Estuarine Scrub/Shrub Wetland, Estuarine Emergent Wetland, Unconsolidated Shore, Water, Palustrine Aquatic Bed and Estuarine Aquatic Bed. Forested wetlands are not included.

Table 2: Conservation and vulnerability status of wildlife habitat and connectivity focus areas within the project's four focal cities of the MCP Urban Area. Percentages indicate the proportion of each category within city-specific focus areas, showing the extent of protected, undevelopable and vulnerable focus areas.

Conservation and Vulnerability Status of Wildlife Habitat & Connectivity Focus Areas within Focal Cities				
Conservation and Vulnerability Status	Manchester Acres (percent)	Nashua Acres (percent)	Lowell Acres (percent)	Lawrence Acres (percent)
Already Protected Focus Areas (GAP 1-3; State Board Lands and State Trust Lands)	1,573 (26%)	1,537 (34%)	369 (28%)	131 (20%)
Undevelopable Land within Focus Areas (not protected)*	1,032 (17%)	534 (11%)	461 (35%)	234 (37%)
Vulnerable Focus Areas	3,478 (57%)	2,512 (55%)	497 (37%)	271 (43%)
Total Wildlife Habitat and Connectivity Focus Areas (Percentages here are of the total MCP Urban Area)	6,083 (3%)	4,583 (2%)	1,327 (1%)	636 (0.3%)

*NOAA Coastal Change Analysis Program (C-CAP) Regional Land Cover Database (NOAA Office for Coastal Management 2021) classes used for portion of Coastal Conservation Focus Areas that are surface water or undevelopable wetland include the following: Palustrine Emergent Wetland, Estuarine Forested Wetland, Estuarine Scrub/Shrub Wetland, Estuarine Emergent Wetland, Unconsolidated Shore, Water, Palustrine Aquatic Bed and Estuarine Aquatic Bed. Forested wetlands are not included.

WORKING LANDS


The Working Lands theme identifies agricultural and forestry landscapes that hold high conservation value based on factors such as soil quality and land cover. These areas represent opportunities to integrate conservation goals with ongoing land use to support biodiversity and ecosystem services while sustaining rural livelihoods. Additionally, agricultural resources within more developed areas of the watershed are important for supporting local food sovereignty, reinforcing the need to protect and manage these lands thoughtfully. To support targeted decision-making, the theme is divided into two sub-themes: **Priority Agricultural Resources** and **Priority Forestry Lands**. This structure helps practitioners determine where to concentrate resources and implement projects that balance production with ecological resilience.

PRIORITY AGRICULTURAL RESOURCES

The Priority Agricultural Resources sub-theme highlights agricultural landscapes with regionally high conservation value, identified based on their productivity, versatility and resiliency within the MCP Service Area (Figure 11). These areas represent the most suitable lands for sustaining agricultural production while supporting ecological functions, making them critical for long-term food security and landscape health. Additionally, agricultural resources within more developed areas of the watershed play an important role in supporting local food sovereignty, reinforcing the need to protect and manage these lands thoughtfully. By pinpointing these priority areas, the analysis provides guidance for conservation practitioners to focus efforts where agricultural viability and ecological benefits intersect, ensuring that working lands remain productive and resilient in the face of changing environmental conditions.

Table 3 summarizes the total area of priority agricultural resources and breaks it down by the percentage that overlaps with existing conservation lands, low-risk conversion features (such as surface waters and the wettest wetlands) and areas vulnerable to conversion. Priority Agricultural Resources account for five percent of the Merrimack Conservation Partnership's service area. Twenty-one percent of the Priority Agricultural Resource areas are conserved (GAP 1-3 and State Board and State Trust Lands). Of the remaining 79 percent of Priority Agricultural resources, one percent consists of water resources considered at low risk of conversion. The vast majority—about 78 percent—is vulnerable to development.

Figure 12 illustrates the results of a Hot Spot Analysis, which identified statistically significant clusters of high-acreage areas designated as priority agricultural resources within the MCP service area. These Hot Spots highlight areas where large, contiguous tracts of farmland are concentrated, offering strategic opportunities for land protection and ecological restoration to strengthen watershed health and agricultural resilience. Table 4 summarizes the acreage of vulnerable priority agricultural resources within each Hot Spot confidence level. The analysis reveals that 6,627 acres (ten percent) fall within 99 percent confidence Hot Spots, representing the most statistically robust clusters. These areas should be prioritized for conservation planning, restoration investment and flood mitigation due to their potential for significant landscape-scale impact. An additional 2,132 acres (three percent) and 2,173 acres (three percent) fall within the 95 percent and 90 percent confidence levels, respectively. These areas show strong to moderate clustering and may support targeted conservation actions, particularly where they align with ecological or community goals. The remaining 56,771 acres (84 percent) are not statistically significant, indicating a more dispersed pattern of priority agricultural resources. While these areas may still support productive farmland and site-specific conservation, they are less likely to contribute to watershed-scale restoration based on spatial clustering alone. These findings help quantify the extent of high-priority agricultural lands and support strategic decision-making for land protection, ecological restoration and efforts to enhance watershed health and agricultural resilience.



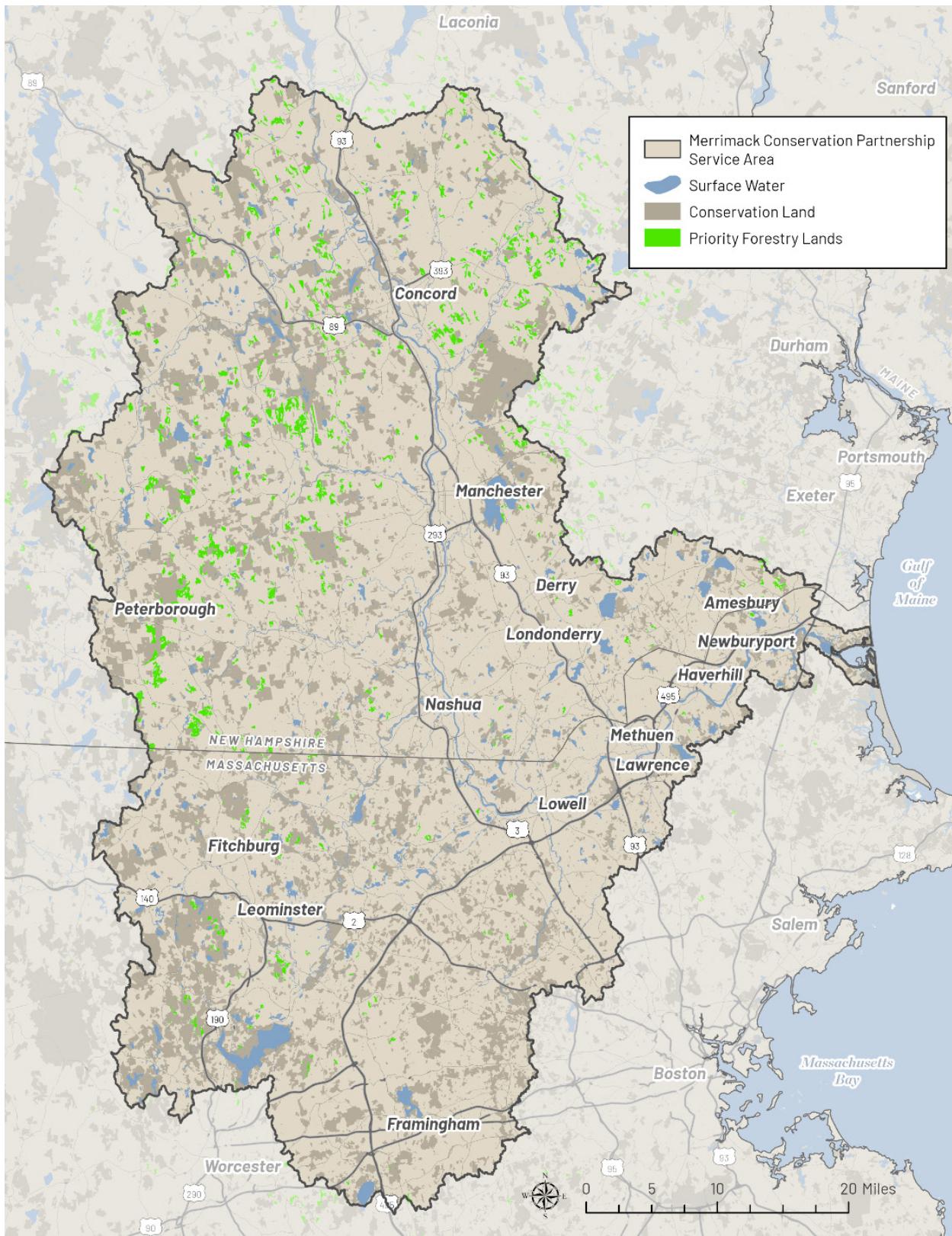
Figure 11: Priority agricultural resource areas within the MCP Service Area. To see this dataset in more detail, please visit the full interactive map & plan at www.nature.org/merrimack
Map credit: Anna Ormiston/TNC

Table 3: Conservation and vulnerability status of priority agricultural resources within the MCP service area. Most priority agricultural resources (78 percent) remain unprotected, alongside smaller areas that are protected or undevelopable.

Conservation & Vulnerability Status of Priority Agricultural Resources within the MCP Service Area	
Conservation and Vulnerability Status	MCP Service Area Acres (percent)
Already Protected Priority Agricultural Resources (GAP 1-3; State Board Lands and State Trust Lands)	18,183 (21%)
Undevelopable Land within Focus Areas (not protected)	591 (1%)
Vulnerable Priority Agricultural Resources	67,703 (78%)
Total Priority Agricultural Resources (percentage of total MCP service area)	86,476 (5%)

*NOAA Coastal Change Analysis Program (C-CAP) Regional Land Cover Database (NOAA Office for Coastal Management 2021) classes used for portion of Coastal Conservation Focus Areas that are surface water or undevelopable wetland include the following: Palustrine Emergent Wetland, Estuarine Forested Wetland, Estuarine Scrub/Shrub Wetland, Estuarine Emergent Wetland, Unconsolidated Shore, Water, Palustrine Aquatic Bed and Estuarine Aquatic Bed. Forested wetlands are not included.

Figure 12: Hot Spot Analysis for priority agricultural resources. To see this dataset in more detail, please visit the full interactive map & plan at www.nature.org/merrimack
Map credit: Anna Ormiston/TNC


Table 4: Hot Spot Analysis for priority agricultural resources identified statistically significant clusters of high-acreage priority agricultural resources within the MCP service area, highlighting strategic opportunities for land protection and restoration, with the most robust clusters (10 percent) prioritized for landscape-scale impact and additional areas supporting targeted conservation aligned with ecological and community goals.

Priority Agricultural Resources Hot Spot Analysis		
Confidence Level	Total Acreage	Percent of Total Vulnerable Priority Agricultural Resources
99%	6,627	10%
95%	2,132	3%
90%	2,173	3%
Not Significant	56,771	84%

Priority Forestry Lands

The Priority Forestry Lands sub-theme identifies forested landscapes that are most suitable for sustainable timber production and long-term forest management. These priority lands represent areas that are larger forest blocks with prime forestry soils, where active management can maintain economic viability while supporting broader conservation goals. In addition to their role in providing timber resources, these forests deliver critical secondary benefits, including wildlife habitat, carbon storage and landscape resiliency. By highlighting areas with the greatest potential for both economic and ecological returns, the analysis helps practitioners prioritize management strategies that balance production with sustainability.

Figure 13 illustrates the distribution of Priority Forestry Lands, while Table 5 breaks down the total acreage by its overlap with existing conservation areas, low-risk conversion features (such as surface waters and the wettest wetlands) and areas vulnerable to conversion. The Priority Forestry Lands account for three percent of the MCP service area. Of that three percent, thirty-eight percent of the Priority Forestry Lands are protected (GAP 1-3 and State Board and State Trust Lands). Of the remaining 62 percent of Priority Forestry Lands, less than one percent is considered at low risk of conversion, while the vast majority—just over 61 percent—is vulnerable to development. Across the MCP service area, 81 percent of total priority forestry lands are located in New Hampshire and 19 percent in Massachusetts; notably, 90 percent of the vulnerable lands fall within New Hampshire, with the remaining 10 percent in Massachusetts.

Figure 13 Priority forestry lands within the MCP Service Area. To see this dataset in more detail, please visit the full interactive map & plan at www.nature.org/merrimack
Map credit: Anna Ormiston/TNC

Table 5: Conservation and vulnerability status of priority forestry lands within the MCP Service Area and by state. Percentages indicate the proportion of protected, undevelopable and vulnerable forestry lands, revealing that most priority forestry lands remain vulnerable—particularly in New Hampshire (69 percent) compared to higher protection levels in Massachusetts (31 percent).

Conservation & Vulnerability Status of Priority Forest Lands: MCP Service Area and by State			
Conservation and Vulnerability Status	MCP Service Area Acres (percent)	New Hampshire Acres (percent)	Massachusetts Acres (percent)
Already Protected Priority Forestry Lands (GAP 1-3; State Board Lands and State Trust Lands)	24,708 (38%)	16,097 (31%)	8,611 (69%)
Undevelopable Land within Priority Forestry Lands (not protected)*	9 (0.01%)	8 (0.02%)	1 (0.01%)
Vulnerable Priority Forestry Lands	40,198 (61.99%)	36,348 (68.98%)	3,850 (30.99%)
Total Priority Forestry Lands (percentage of total MCP service area)	64,915 (3%)	52,453 (81%)	12,462 (19%)

*NOAA Coastal Change Analysis Program (C-CAP) Regional Land Cover Database (NOAA Office for Coastal Management 2021) classes used for portion of Coastal Conservation Focus Areas that are surface water or undevelopable wetland include the following: Palustrine Emergent Wetland, Estuarine Forested Wetland, Estuarine Scrub/Shrub Wetland, Estuarine Emergent Wetland, Unconsolidated Shore, Water, Palustrine Aquatic Bed and Estuarine Aquatic Bed. Forested wetlands are not included.

WATER RESOURCES

The Water Resources theme targets areas where land protection, restoration and renaturing⁹ efforts can deliver the greatest benefits for water quality, wetland protection and the safeguarding of public water supplies. By integrating spatial data on hydrology, land cover and watershed conditions, the results identify areas where strategic interventions can reduce nutrient loading, enhance natural filtration and maintain ecological integrity. To guide conservation planning, the Water Resources theme is divided into three sub-themes: **Public Water Supply Areas**, **High-Potential Renaturing Opportunities** and **Pollutant Attenuation & Removal Areas**. This structure helps practitioners focus efforts where they can achieve the most significant improvements in water quality and watershed resilience based on their targeted solutions and goals.

Pollutant Attenuation and Removal Areas

The Pollutant Attenuation and Removal Areas sub-theme highlights areas within the watershed where natural systems provide the most effective pollutant removal and buffering services. Protecting and restoring these areas will protect and enhance the ability of these systems to remediate pollution into the future. Tier 1 identifies regions providing the greatest pollutant attenuation across the entire watershed, while Tier 2 represents a distribution of higher-functioning wetlands at a localized scale. The analysis draws on data from wetlands and land cover to pinpoint these critical areas, emphasizing the importance of preserving and enhancing natural processes that maintain water quality. These areas are essential for filtering pollutants, maintaining a healthy watershed and reducing nutrient and sediment loads.

Table 6 and Figure 14 show that 285,857 acres—representing fifteen percent of the MCP service area—are designated as Pollutant Attenuation and Removal Areas. Of these, thirty percent (86,813 acres) are protected, four percent (11,211 acres) are undevelopable and the majority—66 percent (187,833 acres)—are vulnerable to conversion. Prioritizing these vulnerable lands for conservation and restoration is essential to prevent increased pollutant loads in waterways.

⁹ **Renaturing** refers to the process of restoring natural functions and ecological integrity to developed or degraded landscapes through nature-based solutions—such as rain gardens, bioswales and riparian buffers—that improve water quality, enhance aquifer recharge and strengthen overall watershed resilience.

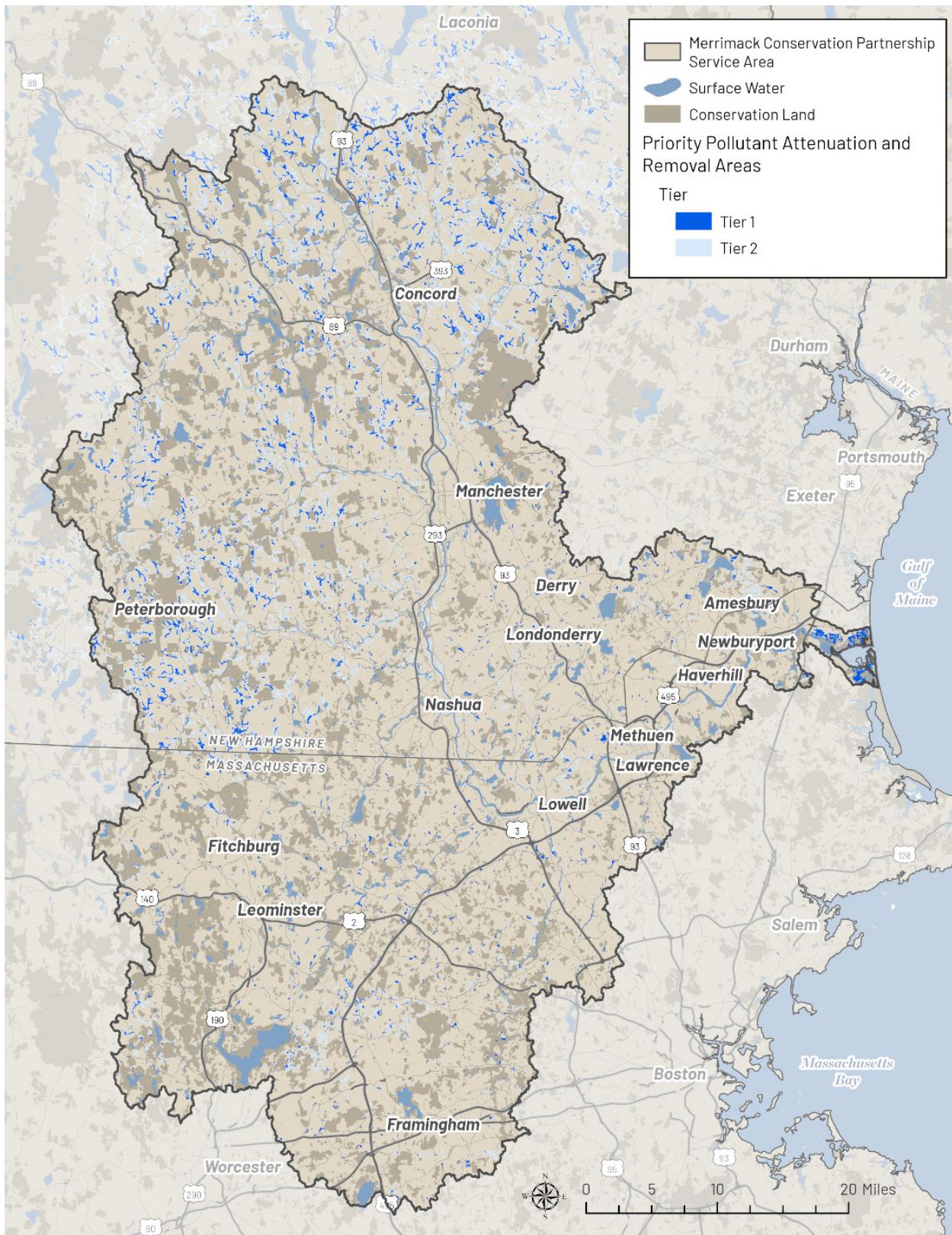

Expanding protections beyond the current thirty percent will help maintain ecological functions, safeguard clean water and reduce long-term restoration costs.

Figure 15 illustrates the conservation and vulnerability status of Pollutant Attenuation and Removal Areas across Tier 1 and Tier 2 areas. In Tier 1 areas, 35 percent (24,520 acres) are protected, 13 percent (8,834 acres) are undevelopable and 52 percent (36,099 acres) remain vulnerable to conversion. This combination of protected and undevelopable lands provides a moderate level of built-in water quality protection. Improving the connectivity of natural areas—such as linking wetlands, riparian buffers and forest patches—and restoring their ecological health in Tier 1 areas will help maintain natural water filtration processes, support wildlife movement and reduce fragmentation. These actions strengthen the watershed's integrity and resilience, making it better-able to withstand development pressures, flooding and nutrient pollution while continuing to provide clean water and ecosystem services. Tier 2 areas, by contrast, are primarily vulnerable: 70 percent (151,733 acres) remain unprotected, while only 29 percent (62,293 acres) are protected and one percent (2,377 acres) is undevelopable. Protecting these lands through conservation easements, zoning and strategic acquisition is critical to prevent water quality decline and avoid costly remediation. Restoration efforts—such as rehabilitating wetlands and riparian buffers—are important across both tiers to restore ecological functions in degraded areas. In short, prioritizing land protection in Tier 2 areas and implementing targeted restoration across both tiers is essential for sustaining clean water, reducing nutrient pollution and supporting long-term watershed health.

Table 6: Conservation and vulnerability status of pollutant attenuation and removal areas within the MCP Service Area. Percentages show the proportion of these areas that are protected, undevelopable, or vulnerable, with two-thirds (66%) remaining unprotected and at risk.

Conservation and Vulnerability Status of Pollutant Attenuation and Removal Areas within the MCP Service Area	
Conservation and Vulnerability Status	Acres (percent)
Already Protected Pollutant Attenuation and Removal Areas (GAP 1-3; State Board Lands and State Trust Lands)	86,813 (30%)
Undevelopable Land within Pollutant Attenuation and Removal Areas (not protected)	11,211 (4%)
Vulnerable Pollutant Attenuation and Removal Areas	187,833 (66%)
Total Pollutant Attenuation and Removal Areas (Percentage of MCP Service Area)	285,857 (15%)

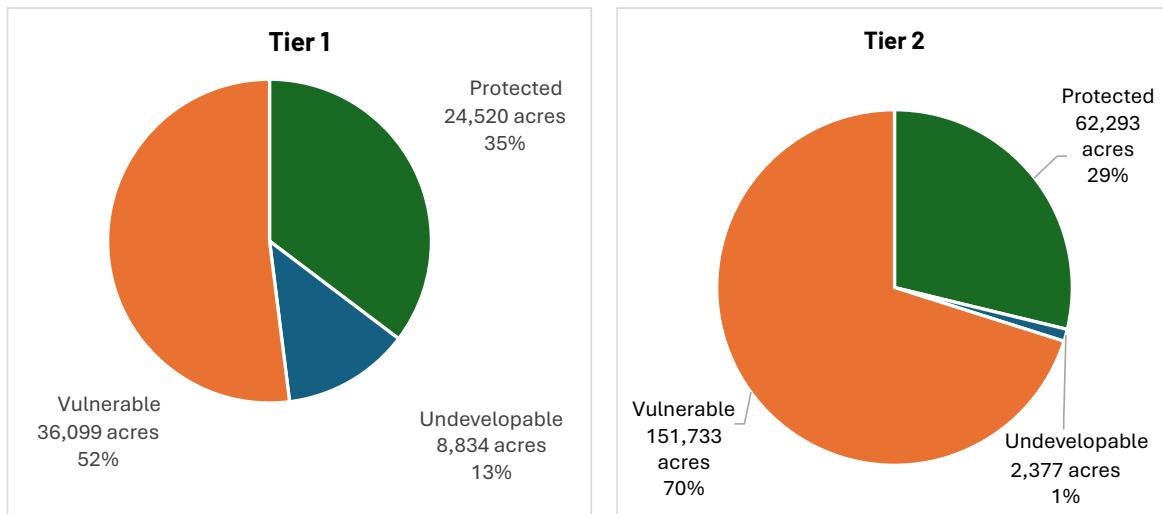
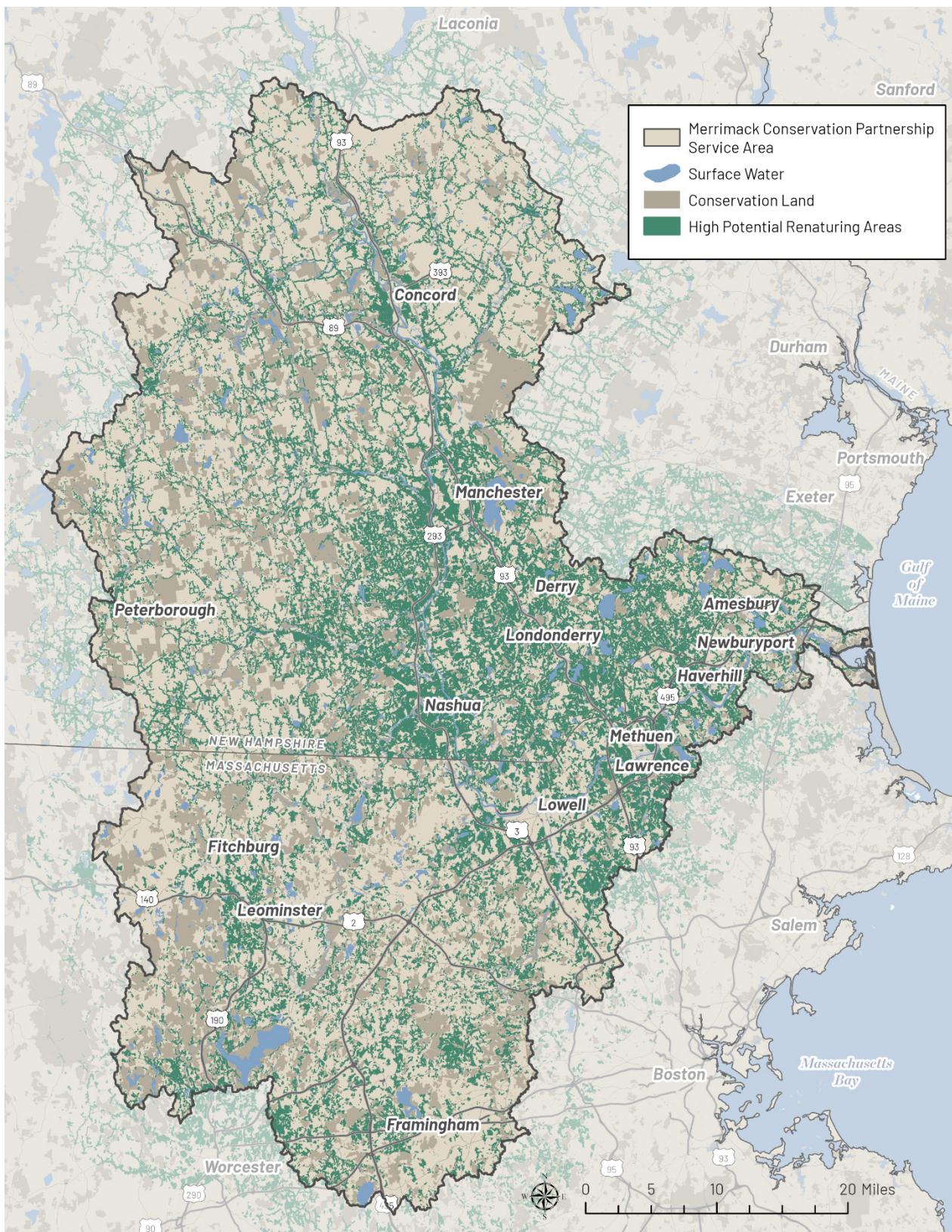

*NOAA Coastal Change Analysis Program (C-CAP) Regional Land Cover Database (NOAA Office for Coastal Management 2021) classes used for portion of Coastal Conservation Focus Areas that are surface water or undevelopable wetland include the following: Palustrine Emergent Wetland, Estuarine Forested Wetland, Estuarine Scrub/Shrub Wetland, Estuarine Emergent Wetland, Unconsolidated Shore, Water, Palustrine Aquatic Bed and Estuarine Aquatic Bed. Forested wetlands are not included.

Figure 14: Priority pollution attenuation and removal areas. To see this dataset in more detail, please visit the full interactive map & plan at www.nature.org/merrimack

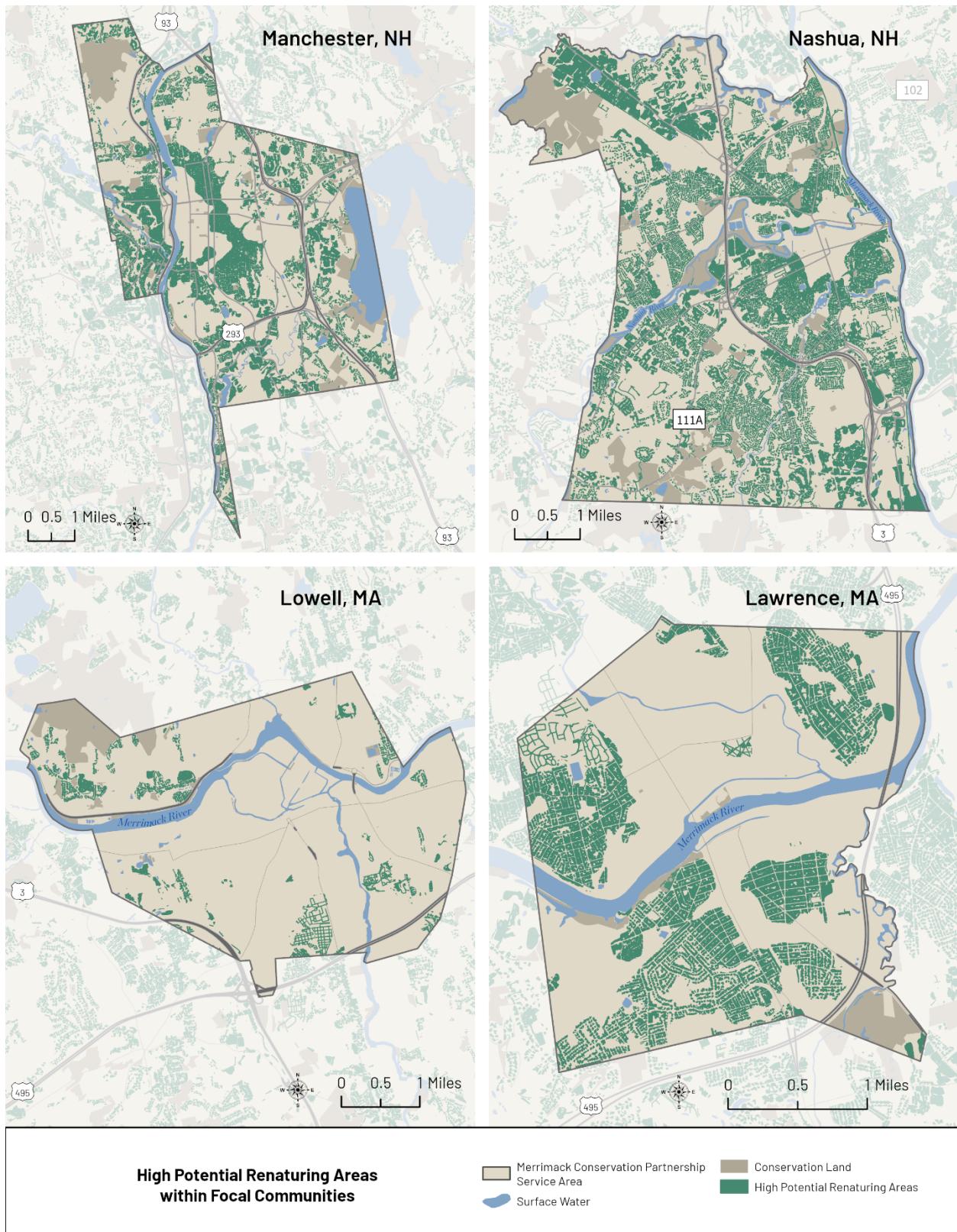
Map credit: Anna Ormiston/TNC

Pollutant Attenuation and Removal Areas by Tier: Conservation and Vulnerability Status


Figure 15: Pollutant Attenuation and Removal Areas by Tier: Conservation and Vulnerability Status. The distribution of land areas within Tier 1 and Tier 2 priorities by conservation status and vulnerability is as follows: Tier 1 comprises 35 percent protected (24,320 acres), 52 percent vulnerable (36,086 acres) and 13 percent undevelopable (8,643 acres). Tier 2 comprises 23 percent protected (8,228 acres), 70 percent vulnerable (25,733 acres) and 7 percent undevelopable (2,577 acres).

High Potential Areas for Renaturing

The High Potential Areas for Renaturing sub-theme targets opportunity areas where restoration and renaturing⁹ efforts can enhance water quality and help safeguard public water supplies. By identifying locations suitable for interventions such as rain gardens and other nature-based solutions, this theme supports increased filtration, aquifer recharge and overall watershed resilience. These opportunities offer practical pathways for improving ecosystem function while contributing to sustainable water resource management.


Figure 16 illustrates the High Potential Renaturing Opportunities within the MCP Service Area. As shown in Table 7, the MCP service area contains 54,233 acres classified as High Potential Renaturing Areas, accounting for three percent of the total area. Of these, 98 percent (53,241 acres) are categorized as opportunity areas—lands not currently protected or undevelopable—highlighting significant potential for restoration efforts. Notably, 70 percent of these opportunity areas (37,057 acres) are located within the MCP Urban Area, emphasizing the importance of urban renaturing strategies. High potential renaturing opportunities within the four focal communities are presented in Table 8 and Figure 17. Among the four focal communities, Nashua has the highest proportion of High Potential Renaturing Areas, with 2,580 acres (13 percent of its total area) identified. Manchester follows with 2,227 acres (10 percent) while Lawrence has 575 acres (12 percent) and Lowell 196 acres (two percent) designated for renaturing opportunities.

Protecting and restoring High Potential Renaturing Areas is especially important for maintaining clean and reliable public water supplies. These areas support natural filtration processes that reduce pollutant loads before they reach surface waters and they play a vital role in recharging groundwater aquifers. In urban settings, where impervious surfaces limit infiltration, renaturing opportunity areas offer strategic potential to implement nature-based solutions—such as rain gardens, bioswales, green roofs and permeable pavements—to enhance water retention and filtration. Green roofs significantly help slow and capture rainfall, reducing runoff and allowing more water to infiltrate into surrounding permeable surfaces, thereby supporting localized aquifer recharge. Such interventions improve drinking water quality and support aquifer recharge and contribute to climate resilience by reducing urban heat, managing stormwater and mitigating flood risks.

Figure 16: Map depicting the extent of High Potential Renaturing Areas across the MCP Service Area. To see this dataset in more detail, please visit the full interactive map & plan at www.nature.org/merrimack

Map credit: Anna Ormiston/TNC

Figure 17: High Potential Renaturing Areas are illustrated within the four focal communities. To see this dataset in more detail, please visit the full interactive map & plan at www.nature.org/merrimack
Map credit: Anna Ormiston/TNC

Table 7: Conservation and Opportunity Status of High Potential Renaturing Areas within the MCP Service Area. Shown here is an overview of High Potential Renaturing Areas categorized by conservation and opportunity status within the MCP Service Area.

Conservation and Opportunity Status of High Potential Renaturing Areas within the MCP Service Area	
Conservation and Opportunity Status	Acres (percent)
Already Protected High Potential Renaturing Areas (GAP 1-3; State Board Lands and State Trust Lands)	873 (2%)
Undevelopable Land within High Potential Renaturing Areas (not protected)*	119 (0.2%)
High Potential Renaturing Opportunity Areas	53,241 (98%)
Total High Potential Renaturing Areas (Percentage of MCP Service Area)	54,221 (3%)

*NOAA Coastal Change Analysis Program (C-CAP) Regional Land Cover Database (NOAA Office for Coastal Management 2021) classes used for portion of Coastal Conservation Focus Areas that are surface water or undevelopable wetland include the following: Palustrine Emergent Wetland, Estuarine Forested Wetland, Estuarine Scrub/Shrub Wetland, Estuarine Emergent Wetland, Unconsolidated Shore, Water, Palustrine Aquatic Bed and Estuarine Aquatic Bed. Forested wetlands are not included.

Table 8: High Potential Renaturing Opportunities in Focal Communities. This table shows the extent of High Potential Renaturing Areas within selected focal communities.

High Potential Renaturing Opportunities in Focal Communities		
Project's Focal Community	High Potential Renaturing Opportunities (Acres)	Percent of the city's area
Manchester	2,227	10%
Nashua	2,580	13%
Lawrence	575	12%
Lowell	196	2%

Public Water Supply

The Public Water Supply sub-theme (Figure 18) identifies priority catchments that play a critical role in sustaining public water supplies. These catchments contribute to surface water supply areas, groundwater supply areas or both and are essential for ensuring the availability and quality of drinking water. Prioritizing these areas for protection and restoration strengthens watershed-wide strategies for managing and protecting water resources. Tier 1 catchments have a higher likelihood of contributing to both surface water and groundwater supply areas, making them the most critical for protection; Tier 2 catchments are more likely to contribute to either surface water or groundwater supply areas; and Tier 3 catchments support surface water or groundwater supply areas, typically where public water supply areas make up 5-49% of the entire catchment. This tiered approach helps prioritize actions where they will have the greatest impact on maintaining drinking water quality and watershed resilience.

The Public Water Supply sub-theme identifies priority catchments that are critical for sustaining drinking water resources across the MCP Service Area. These catchments contribute to surface water and groundwater supply systems, forming the backbone of regional water security. Figure 19 illustrates the conservation and vulnerability status of public water supply areas within the MCP Service Area, totaling 936,008 acres (49 percent of the MCP Service Area). Of this total, 75 percent (702,574 acres) remain vulnerable and unprotected, 21 percent (194,963 acres) are already protected and four percent (38,471 acres) are undevelopable but not formally conserved. This distribution underscores a significant conservation gap, particularly in high-priority catchments that directly influence water quality and availability.

The tiered vulnerability breakdown further refines conservation priorities:

- **Tier 1(five percent, 47,056 acres)** comprises the most critical zones for immediate protection due to their direct influence on water supply infrastructure and recharge areas.
- **Tier 2(23 percent, 211,108 acres)** includes areas with moderate vulnerability, where targeted restoration and land-use controls can yield substantial benefits.
- **Tier 3(47 percent, 444,471 acres)** represents the largest share of vulnerable lands, requiring broad-scale strategies to prevent fragmentation and degradation.

Figure 20 illustrates the conservation and vulnerability status of public water supply areas within the MCP urban area, totaling 411,910 acres (44 percent). Within this area, the majority of these lands—347,232 acres (84 percent)—are classified as vulnerable, meaning they are not currently protected. In contrast, 47,182 acres (11 percent) are protected and 17,496 acres (four percent) are undevelopable but not formally conserved.

The tiered vulnerability breakdown further refines conservation priorities:

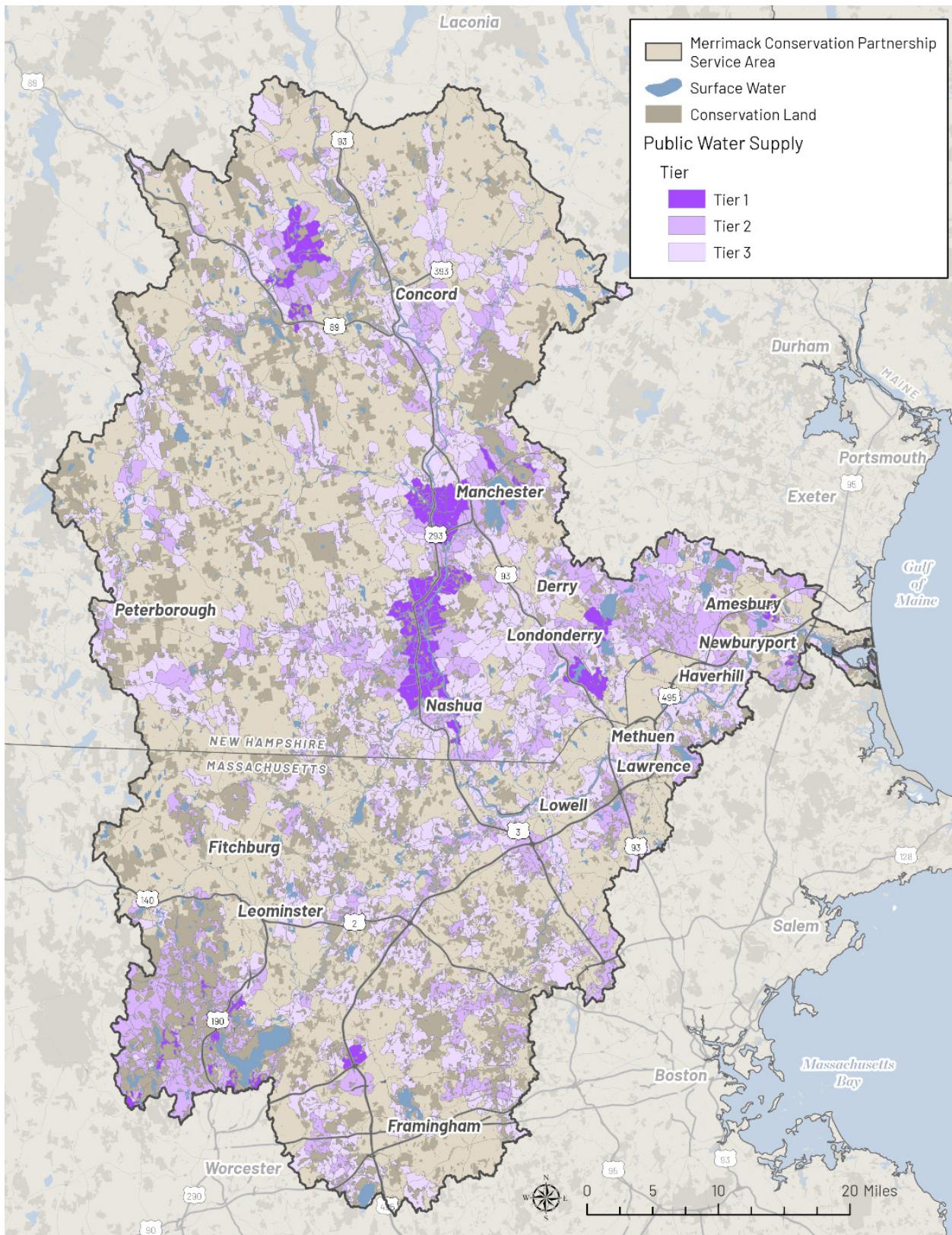
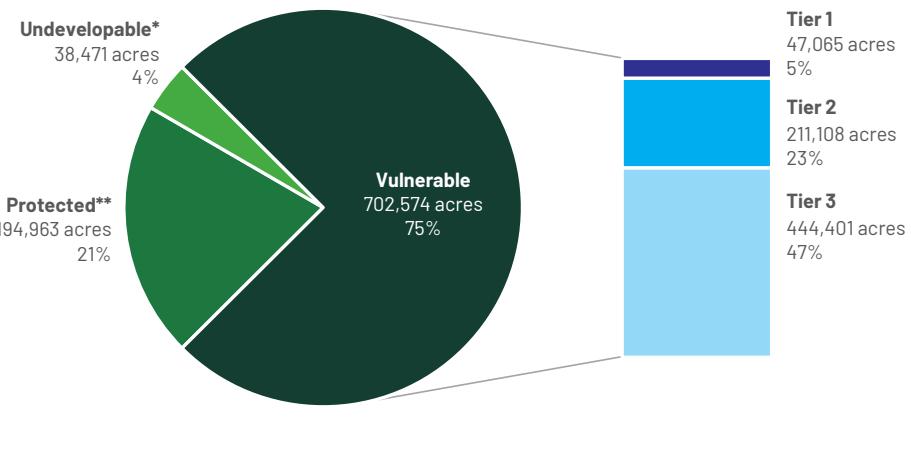

- **Tier 1: (eight percent, 31,367 acres)**— the highest priority areas for protection due to their critical role in water supply.
- **Tier 2: (26 percent, 106,320 acres)**— moderate priority lands that could benefit from targeted conservation measures.
- **Tier 3: (51 percent, 209,685 acres)**— the largest share, representing areas with lower immediate risk but significant long-term importance.

Table 9 and Table 10 together provide insight into the distribution and relative significance of vulnerable public water supply areas within the four focal communities—Manchester, Nashua, Lowell and Lawrence. Manchester has the largest vulnerable acreage at 18,151 acres, nearly half of which (46%) falls in Tier 1, indicating high-priority lands for protection. Nashua follows with 15,071 acres, where Tier 2 and Tier 3 dominate and Tier 1 accounts for 29%. In contrast, Lowell and Lawrence have smaller vulnerable acreages—4,448 acres and 2,114 acres, respectively—almost entirely concentrated in Tier 3. When compared to the MCP service area total of 702,574 acres, Manchester and Nashua represent the largest shares at 2.58% and 2.15%, while Lowell and Lawrence contribute 0.63% and 0.30%.

The predominance of vulnerable lands within public water supply catchments presents an opportunity for proactive planning focused on land protection and restoration. Conserved landscapes—such as forests, wetlands and healthy soils—help maintain watershed function by storing and gradually releasing water, which supports base flows and groundwater recharge during dry periods. These natural systems also filter pollutants, reducing the likelihood of contamination from runoff or development. By addressing vulnerability before degradation occurs, communities can better maintain drinking water quality, manage treatment costs and support long-term resilience under changing climate and land-use conditions.


Overall, most water supply lands remain unprotected, both across the MCP service area and within urban areas, presenting opportunities for strategic conservation and restoration. While the MCP service area includes 936,008 acres of water supply lands with 75 percent vulnerable (Figure 19), urban areas account for 411,910 acres with an even higher proportion—84 percent—classified as vulnerable (Figure 20). This suggests that urban catchments may require particular attention in planning efforts to maintain water quality and resilience.

Although each focal community's share of vulnerable public water supply areas is modest (Table 10), they represent localized areas where strategic conservation and restoration can have a meaningful impact on water quality and resilience. The tier system provides important context for prioritization: Tier 1 lands are most critical because they have a higher likelihood of contributing to both surface water and groundwater supply areas, making them essential for immediate protection. Tier 2 lands are likely to support either surface water or groundwater supply areas, offering significant benefits for targeted conservation. Tier 3 lands pose an important role for long-term watershed integrity as they are typically found where public water supply areas are lacking in the landscape. Communities with higher proportions of Tier 1 and Tier 2 lands—such as Manchester and Nashua—present key opportunities for near-term action, while Lowell and Lawrence, dominated by Tier 3 lands, may require broader-scale strategies to maintain resilience over time.

Figure 18: Public water supply areas within the MCP Service Area. To see this dataset in more detail, please visit the full interactive map & plan at www.nature.org/merrimack
Map credit: Anna Ormiston/TNC

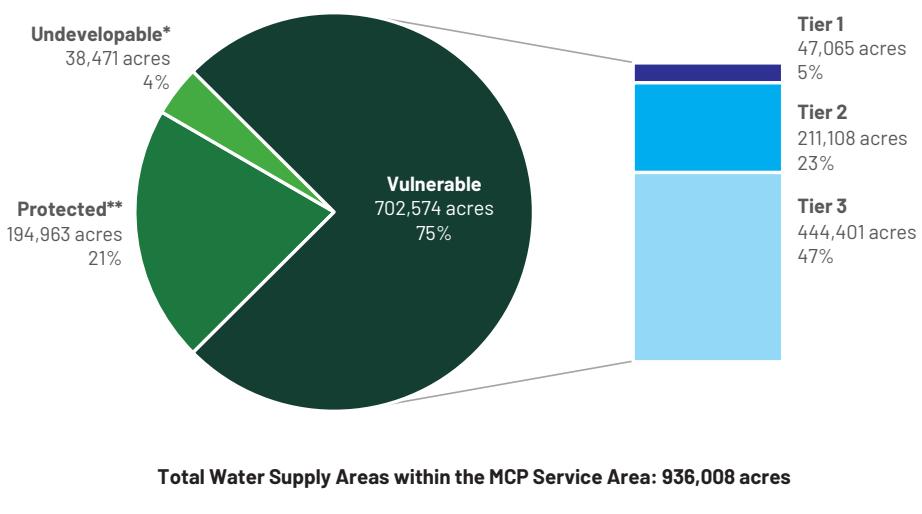

Conservation and Vulnerability Status of Public Water Supply Areas within MCP Service Area

Figure 19: Protection and vulnerability status of Public Water Supply Areas within the MCP Service Area. Tier breakdowns highlight varying levels of conservation priority across the service area.

*NOAA Coastal Change Analysis Program (C-CAP) Regional Land Cover Database (NOAA Office for Coastal Management 2021) classes used for portion of Coastal Conservation Focus Areas that are surface water or undevelopable wetland include the following: Palustrine Emergent Wetland, Estuarine Forested Wetland, Estuarine Scrub/Shrub Wetland, Estuarine Emergent Wetland, Unconsolidated Shore, Water, Palustrine Aquatic Bed and Estuarine Aquatic Bed. Forested wetlands are not included.
**(GAP 1-3; State Board Lands and State Trust Lands)

Conservation and Vulnerability Status of Public Water Supply Areas within MCP Service Area

Figure 20: Conservation and Vulnerability Status of Public Water Supply Areas within the MCP Urban Area. The figure illustrates the distribution of public water supply areas by conservation status and vulnerability. Of the total 411,910 acres (44 percent of the MCP Urban Area), 84 percent (347,526 acres) are vulnerable, 11 percent (45,743 acres) are protected and four percent (17,474 acres) are undevelopable. The call-out bar chart shows vulnerable lands by priority tier: Tier 1 (31,267 acres, 8 percent), Tier 2 (100,226 acres, 24 percent) and Tier 3 (209,463 acres, 51 percent).

*NOAA Coastal Change Analysis Program (C-CAP) Regional Land Cover Database (NOAA Office for Coastal Management 2021) classes used for portion of Coastal Conservation Focus Areas that are surface water or undevelopable wetland include the following: Palustrine Emergent Wetland, Estuarine Forested Wetland, Estuarine Scrub/Shrub Wetland, Estuarine Emergent Wetland, Unconsolidated Shore, Water, Palustrine Aquatic Bed and Estuarine Aquatic Bed. Forested wetlands are not included.
**(GAP 1-3; State Board Lands and State Trust Lands)

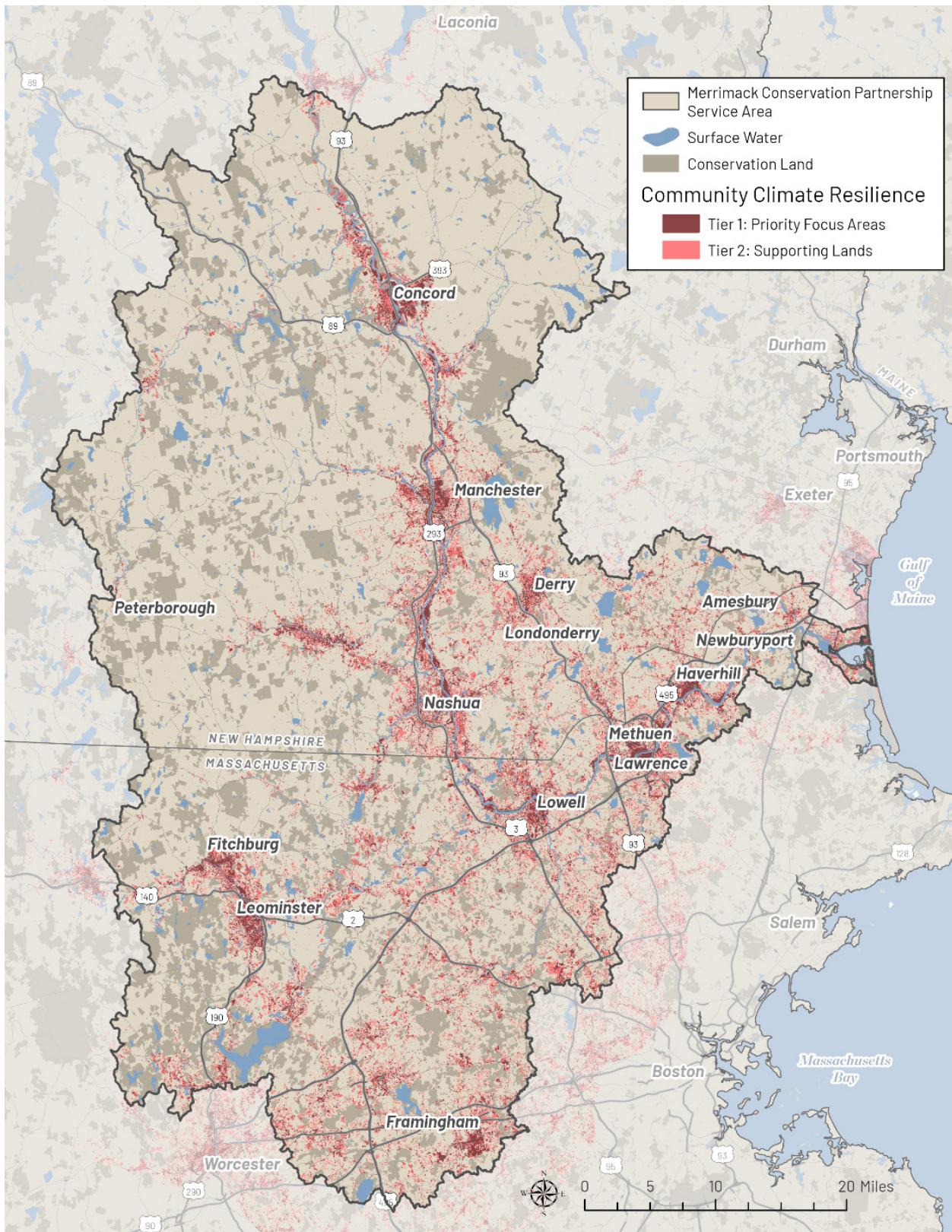
Table 9: Vulnerable public water supply areas within the four focal communities. Values are shown in acres with the percentage of total vulnerable Public Water Supply that each tier represents.

Vulnerable Public Water Supply Areas within the Focal Communities				
Prioritization	Manchester Acres (percent)	Nashua Acres (percent)	Lowell Acres (percent)	Lawrence Acres (percent)
Tier 1	8,260 (46%)	4,422 (29%)	0	0
Tier 2	4,553 (25%)	4,529 (30%)	653 (15%)	0
Tier 3	5,338 (29%)	6,121 (41%)	3,795 (85%)	2,114 (100%)
Total Acreage of Vulnerable Public Water Supply Areas	18,151	15,071	4,448	2,114

Table 10: Vulnerable Public Water Supply Areas in Focal Communities as a proportion of MCP service area Total. This table shows the total acreage of vulnerable public water supply areas within each focal community and the percentage each represents of the MCP's service area overall vulnerable public water supply acreage (702,574 acres).

Vulnerable Public Water Supply Areas in Focal Communities as a Proportion of MCP service area Total		
<i>Total MCP Vulnerable Public Water Supply Acreage: 702,574 acres</i>		
Community	Vulnerable Public Water Supply Areas (Acres)	Percent of MCP Vulnerable Public Water Supply Areas
Manchester	18,151	2.58%
Nashua	15,071	2.15%
Lowell	4,448	0.63%
Lawrence	2,114	0.30%

COMMUNITY CLIMATE RESILIENCE


The Community Climate Resilience (CCR) theme (Figure 21) identifies focus areas and supporting lands within the MCP Service Area that reflect community priorities for reducing flood risk, mitigating urban heat and improving access to green space. The analysis integrates spatial data on heat severity, flood storage potential, green space and census blocks at higher risk for flooding and heat exposure with local assets and experiences gathered through community engagement. By combining these factors, the results highlight places where investments in trees, green infrastructure and open space can deliver multiple benefits—enhancing climate resilience, reducing vulnerability and improving quality of life for residents.

The CCR theme results are organized into two tiers divided by quantiles. **Tier 1: Focus Areas** represent the top 20 percent of values, where multiple community climate resilience priorities—such as flood storage potential, heat mitigation and recreational access—overlap most frequently. These areas indicate the highest potential for delivering combined benefits through conservation and green infrastructure investments. **Tier 2: Supporting Lands** include the next 20 percent of values (60–80 percent quantile), which provide important opportunities for resilience but with less overlap of priority factors than Tier 1. While Tier 1 areas should be considered for near-term action, Tier 2 lands remain essential for building a connected network of climate-resilient spaces and supporting long-term community goals.

The Community Climate Resilience theme identifies 210,135 acres within the Merrimack Conservation Partnership service area (11 percent) as priority lands for enhancing climate resilience through nature-based solutions (Table 11). This includes 78,536 acres of focus areas and 131,599 acres of supporting lands, together representing 11 percent of the MCP service area. Notably, 92 percent of these lands—totaling 193,121 acres—are identified as opportunity areas, meaning they are neither protected nor undevelopable and offer the greatest potential for strategic interventions. These areas are ideal for implementing nature-based solutions such as tree planting, green infrastructure development, floodplain restoration and the creation of parks or open spaces. Only seven percent of the CCR priorities are currently protected and one percent are undevelopable. Targeting opportunity areas can help reduce urban heat, improve stormwater management and expand access to green space—especially in areas identified as vulnerable to flooding and extreme heat through spatial analysis and public engagement. These findings underscore a critical path forward for building long-term resilience across the Merrimack River watershed.

A total of 177,215 acres of the Community Climate Resilience (CCR) priorities fall within the MCP Urban Area representing 84 percent of all CCR priority lands (Table 11). This includes 69,495 acres of focus areas (89 percent of all CCR focus areas) and 107,720 acres of supporting lands (82 percent of all CCR supporting lands), highlighting the concentration of resilience needs within urban environments. Of these urban CCR lands, only five percent are currently protected and one percent are undevelopable, leaving a substantial 94 percent classified as opportunity areas—lands that are available for strategic investments in nature-based solutions. These figures emphasize the critical role urban areas play in regional climate resilience efforts and the significant potential for targeted interventions to reduce heat, manage stormwater and expand access to green space.

Urban areas are central to climate resilience strategies and the project's four focal communities of Manchester, Nashua, Lowell and Lawrence offer thousands of acres (12 percent of all CCR opportunities within the MCP Urban Area) for strategic investment (Table 12). These lands offer prime locations for nature-based solutions that can reduce flood risk, mitigate urban heat and expand access to green space. Manchester and Nashua each contribute roughly 4% of the total, with 6,977 and 7,154 acres respectively, split between CCR Focus Areas and Supporting Lands. Lowell adds another 4,256 acres (3%), while Lawrence contributes 2,671 acres (2%). Notably, each city has a significant area with potential for CCR opportunities. Lawrence has the highest proportion at 56 percent, followed by Lowell (46 percent), Nashua (35 percent) and Manchester (31 percent). These figures underscore the potential for targeted-CCR investment that can deliver benefits for both people and nature.

Figure 21: Community climate resilience priority focus areas and supporting lands. To see this dataset in more detail, please visit the full interactive map & plan at www.nature.org/merrimack
Map credit: Anna Ormiston/TNC

Table 11: Conservation and Opportunity Status of Community Climate Resilience Priorities. This table summarizes the conservation status of Community Climate Resilience (CCR) priorities within the MCP Service and Urban Areas, showing acres and percentages of Focus Areas and Supporting Lands that are protected, undevelopable or available for future investment. Over 90% of CCR lands in both areas are classified as opportunity areas, indicating substantial potential for strategic actions to reduce flood risk, mitigate heat and enhance access to green space.

Conservation and Opportunity Status of Community Climate Resilience Priorities in MCP Service and Urban Areas						
Conservation and Opportunity Status	Within MCP Service Area			Within the MCP Urban Area		
	Focus Area Acres (percent)	Supporting Lands Acres (percent)	Total Acres (percent)	Focus Area Acres (percent)	Supporting Lands acres (percent)	Total Acres (percent)
Protected	4,670 (6%)	9,661 (7%)	14,331 (7%)	3,439 (5%)	6,061 (6%)	9,500 (5%)
Undevelopable	1,042 (1%)	1,641 (1%)	2,683 (1%)	797 (1%)	1,186 (1%)	1,984 (1%)
Opportunity	72,824 (93%)	120,297 (92%)	193,121 (92%)	65,259 (94%)	100,473 (93%)	165,731 (94%)
Total Community Climate Resilience	78,536 (4%*)	131,599 (7%*)	210,135 (11%*)	69,495 (89%**)	107,720 (82%**) (**)Percent within MCP Urban Area	177,215 (84%**) (**)Percent within MCP Urban Area
(*Percent of total MCP Service Area)			(**Percent of total MCP Urban Area)			

NOAA Coastal Change Analysis Program (C-CAP) Regional Land Cover Database (NOAA Office for Coastal Management 2021) classes used for portion of Coastal Conservation Focus Areas that are surface water or undevelopable wetland include the following: Palustrine Emergent Wetland, Estuarine Forested Wetland, Estuarine Scrub/Shrub Wetland, Estuarine Emergent Wetland, Unconsolidated Shore, Water, Palustrine Aquatic Bed and Estuarine Aquatic Bed. Forested wetlands are not included.

Table 12: Community Climate Resilience Opportunity Areas in Focal Communities. This table shows the extent of CCR opportunity areas within four focal communities, including acres and percentages for CCR Focus Areas, Supporting Lands and total CCR priority areas, as well as the share of each city's area with CCR opportunities.

Community Climate Resilience Opportunity Areas within Focal Communities				
Focal Community	CCR Focus Areas in acres (percent*)	CCR Supporting Lands in acres (percent**) (**)Percent is based on 100,473 acres of CCR Supporting Land Opportunities in the MCP Urban Area.	Total CCR priority areas in acres (percent***) (***Percent is based on 165,731 acres of total CCR Opportunities in the MCP Urban Area.	Percent of city area with CCR opportunities
Manchester	3,687 (6%)	3,290 (3%)	6,977 (4%)	31%
Nashua	3,238 (5%)	3,915 (4%)	7,154 (4%)	35%
Lowell	2,437 (4%)	1,818 (2%)	4,256 (3%)	46%
Lawrence	2,041 (3%)	630 (1%)	2,671 (2%)	56%

*Percent is based on 69,495 acres of CCR Focus Area Opportunities in the MCP Urban Area.

**Percent is based on 100,473 acres of CCR Supporting Land Opportunities in the MCP Urban Area.

***Percent is based on 165,731 acres of total CCR Opportunities in the MCP Urban Area.

Integrating Community Climate Resilience Data: Inputs and Insights

This section outlines the integration of multiple input datasets that collectively form the Community Climate Resilience theme. Each dataset represents a distinct dimension of local community climate challenges including flooding, extreme heat and green space accessibility. Subsequent sections provide a detailed breakdown of each input, enabling practitioners to examine the underlying data and identify priority areas for targeted interventions. This structured approach is intended to support informed decision-making and guide the development of effective conservation and climate resilience strategies.

Describing Community Member Experiences

Over 320 residents participated in community mapping events to identify areas affected by flooding, extreme heat and limited access to green space. Through these sessions, described in more detail in the "[Community Mapping](#)" section, participants located points of interest and rated their experiences, generating more than 700 unique data points. Each point represents a personal story tied to climate challenges—struggling with heat, coping with flood impacts or seeking improved green spaces or better access to green space—providing a powerful foundation for understanding community needs. Community input directly informed the plan's scientific analysis to identify priority areas for community climate resilience solutions, ensuring that local experiences shape actionable strategies.

To read the comments and other qualitative input provided alongside the points and rankings, refer to [Appendix 3a](#).

Green Space Ranking System

To assess the quality and resilience potential of green spaces—and to reflect community perspectives—we used a five-tier ranking system from A to F, similar to academic grades. Community members applied this scale to qualify their experiences and perceived needs for green space improvement or expansion in areas within their community.

While the format resembles academic grading, the rankings are subjective and represent a blend of ecological value and community priority. They help identify where nature-based solutions can have the greatest impact.

- A – Exceptional quality; examples of community desires for green space
- B – High quality with some need for improvements
- C – Moderate quality; may require restoration or improvement
- D – Poor quality; requires restoration or improvement
- F – Very poor quality of existing green space or need for additional green space

Green spaces identified by community members were initially ranked using an A-F scale, where A represented exceptional quality and minimal need for improvement. To streamline analysis, these rankings were converted to a numerical scale from 1 to 4, excluding A-rated spaces due to their high quality. The conversion is as follows:

- B - 1(minor improvements needed)
- C - 2(moderate improvements needed)
- D - 3(significant improvements needed)
- F - 4(severe improvement or new green space needed)

Tree Coverage Ranking System

To assess tree coverage and reflect community perspectives, community members applied a four-tier numerical ranking system, 1 to 4, to express their experiences with tree presence and shade in specific areas of their community. Tree coverage was used as a proxy for urban heat exposure as tree canopy has a significant influence on temperatures and cooling. Individuals are more readily able to observe tree coverage than heat islands, which are hard to conceptualize outside of extreme heat events.

The rankings are subjective and represent a blend of ecological value, community priority and vulnerability to urban heat. Tree coverage plays a critical role in reducing surface temperatures and providing shade. These rankings help identify where tree planting or maintaining existing trees could have the greatest impact.

- 1 – High tree coverage: Area has abundant shade and ecological benefits; canopy maintenance would be beneficial
- 2 – Moderate tree coverage: Some shade and benefits present, but additional trees could improve conditions
- 3 – Low tree coverage: Limited shade; area would benefit from tree planting
- 4 – Very low or no tree coverage: Area in need of significant tree planting

Flood Hazard Ranking System

To assess flood vulnerability and reflect community perspectives, the project team had community members apply a four-tier numerical ranking system, 1 to 4, to express their experiences with flooding in specific areas of their community.

The rankings are subjective and represent a blend of community priority, observed flood impacts and frequency of flooding events. These scores help identify areas where flood mitigation strategies—such as green infrastructure, improved drainage or restoration—could have the greatest impact.

- 1 – Occasionally a problem: Flooding occurs infrequently and causes minimal disruption; monitoring and minor improvements may be sufficient
- 2 – Intermittent problem: Flooding happens from time to time and may affect access or infrastructure; targeted mitigation could improve conditions
- 3 – Frequent problem: Flooding occurs regularly and poses challenges to mobility, safety or property; area is a candidate for significant intervention
- 4 – Chronic problem: Flooding is persistent and severe, often disrupting daily life or causing damage; area is a high priority for flood resilience solutions

This simplified scale to score community experience helps prioritize areas based on the severity of community-identified needs.

Community Input Highlights

These concepts help translate community stories into actionable data, guiding the identification of priority areas for climate resilience strategies.

Scores: The scaled values community members used to rate their experiences with access to green space, tree coverage and flooding within their neighborhoods. Scores reflect perceived conditions and needs to help prioritize areas for improvement.

Records: Individual data points collected from a participant during the community mapping process. Records include a location and a score of green space accessibility or quality, tree coverage or flooding. Records capture specific experiences and observations that inform the broader analysis.

Counts: The number of times a specific location was identified and scored for the same climate-related concern. Counts are provided when multiple community members cite the same location in unique records to highlight areas of shared concern and recurring issues.

Manchester

The Manchester community input dataset includes a total of 74 records, categorized into three conservation target types: Flood Hazard (27 records), Improved or Additional Green Space (26 records) and Tree Coverage (21 records). Twenty-one locations received multiple ratings based on community experiences with flooding, heat and the need for improved or additional green space. *Livingston Park* stands out with the highest count (5), reflecting frequent community recognition and potential for impactful conservation efforts that meet the need for improved green space. Twenty locations received scores of four, including six areas with severe heat identified through lacking tree coverage, one site needing improved green space and 13 flood hazard areas.

Nashua

The Nashua community input dataset includes 97 records across three conservation target types: Flood Hazard (41 records), Improved or Additional Green Space (32 records) and Tree Coverage (24 records). Twenty-one locations were scored 4, reflecting strong community concern and need for conservation. These top-scored locations span all three conservation targets: severe heat vulnerability (lacking tree coverage), need for green space improvements and high flood risk zones. Notably, the community recognized *Mine Falls Park* in eight different records, indicating potential for impactful conservation action. Twenty-one locations received scores of four, including nine areas with severe heat identified through tree coverage, one area needing improved green space and 11 flood hazard areas. Community members identified flood-prone areas most frequently as high-priority, followed closely by locations with heat vulnerability due to limited tree coverage.

Lowell

The Lowell community input dataset includes 74 records, with the majority focused on Improved or Additional Green Space (35 records), followed by Tree Coverage (27 records) and Flood Hazard (12 records). The community assigned scores of 4 to 19 locations reflecting strong concern across all three conservation targets. These include 11 locations recorded for lack of Tree Coverage; seven locations for needed Improved Green Space, primarily labeled *Need More Green Space in Highlands*; and two locations noted as Flood Hazard, including *Claypit Brook*. The most frequently mentioned locations, each with counts of three, were *Fort Hill*, *Lowell Cemetery and Shedd Park* (Tree Coverage); and *South Common* and *Lowell Cemetery* (both under Improved Green Space). The data reflect community interest in conservation action at these locations.

Lawrence

The Lawrence community input dataset includes 63 records, 27 records each for Tree Coverage and Flood Hazard and nine records focused on Improved or Additional Green Space. A total of 13 locations were scored four, indicating strong community concern or potential conservation value. These top-scored locations span all three conservation targets: nine locations were identified for lacking Tree Coverage, reflecting areas with high heat vulnerability; three locations were flagged for Flood Hazard, highlighting flood-prone areas; and one location was recognized for its need for Improved Green Space. The most frequently mentioned locations, each with a count of four, include *Forest & Haverhill St & Tower Hill* and *Methuen St.* (both under Tree Coverage), *North Common Park* (Improved or Additional Green Space) and *Methuen St.* (Flood Hazard), highlighting these areas as key priorities for conservation action.

Heat Severity

The Trust for Public Land (TPL) developed a national Heat Severity dataset in 2024¹⁰, which has been integrated into the Merrimack River Watershed Conservation Plan to identify areas most affected by urban heat and to prioritize opportunities for relief. Within the Merrimack Conservation Partnership's service area, this dataset helped pinpoint communities with the highest heat island severity—particularly in urbanized areas—where impervious surfaces and limited green space intensify heat exposure. For this analysis, heat severity categories were reclassified into five ranges: 0–20 as low severity, 20–40 as moderate severity, 40–60 as high severity, 60–80 as very high severity and 80–100 as maximum severity.

The plan emphasizes nature-based solutions such as increasing tree canopy and expanding park access, especially in densely populated cities like Manchester, Nashua, Lowell and Lawrence. These efforts aim to mitigate the urban heat island effect and promote climate resilience throughout the watershed's rural-to-urban gradient.

The MCP Service Area spans 1,895,082 acres, 524,149 acres (28 percent) are hotter than the average city temperature, these are classified under heat severity levels Table 13 shows that most of these areas experience low severity heat (53 percent) or moderate severity (28 percent). Higher severity levels are less common: high severity (13 percent), very high (five percent) and maximum severity (one percent). These figures indicate that while much of the service area faces minimal heat stress, 47 percent still experiences moderate to extreme heat conditions. This pattern reflects the rural-to-urban gradient of the Merrimack River watershed, where increasing urbanization—particularly in cities along the river corridor—correlates with higher heat severity due to dense development and reduced natural-land cover.

¹⁰ Trust for Public Land. "Heat Severity – USA 2024." GIS data, ArcGIS Online, 2025. <https://tpl.maps.arcgis.com/home/item.html?id=55f3c64e35e04d39b0128dbaba9511c4>. Accessed January 2025.

Within the MCP Urban Area, heat severity is far more concentrated. Table 13 shows that of the 524,149 acres classified under heat severity, 313,975 acres (60 percent) are located in urban areas. Severe heat levels are disproportionately urban:

- 81 percent of maximum severity and 81 percent of very high severity acres occur in urban areas.
- 72 percent of high severity and 63 percent of moderate severity acres are also urban.

Nearly half (47 percent) of urban land falls under moderate severity or higher, underscoring the vulnerability of urban communities to extreme heat. This increased exposure is largely driven by impervious surfaces—such as roads, rooftops and parking lots—which absorb and retain heat to intensify the urban heat island effect. These findings highlight priority areas for cooling strategies like tree canopy enhancement and green infrastructure.

The MCP Urban Area contains approximately 313,975 acres of heat severity levels, distributed across focal communities including Lawrence, Lowell, Manchester and Nashua (see Table 14). Among these, Manchester accounts for the largest share with 10,023 acres (three percent of the MCP total), followed by Nashua with 8,771 acres (3 percent), Lowell with 4,618 acres (one percent) and Lawrence with 2,677 acres (one percent). Within each city, the majority of heat severity areas fall under low and moderate severity levels, representing between 42–47 percent and 25–33 percent of their respective totals. High and very high severity levels make up smaller proportions, while maximum severity areas are minimal (1–2 percent). Overall, heat severity levels cover 43–56 percent of each city's total area, indicating significant exposure across all focal communities.

Table 15 summarizes the overlap between heat severity levels and Community Climate Resilience (CCR) priority areas within the MCP Service Area. Of the 524,149 acres classified under heat severity, 166,058 acres (32 percent) coincide with CCR priorities. Nearly all of the areas facing the most extreme heat are concentrated within CCR lands: 92 percent of very high severity and 91 percent of maximum severity heat areas fall within these areas. This pattern underscores that CCR priority areas align closely with areas of greatest heat vulnerability, highlighting a critical opportunity for targeted interventions such as tree canopy expansion, cooling infrastructure and green space development.

Table 13: Distribution of Heat Severity Levels within the MCP Service Area and Urban Area. The table compares acres and percentages for each heat severity level, illustrating how much of each heat severity level occurs within urban areas and the entire service area. For example, of the 5,915 acres classified as maximum heat severity within the MCP Service Area, 81 percent (4,764 acres) are located in the MCP Urban Area.

Area of Heat Severity Levels within the MCP Service Area and Urban Area				
Heat Severity Level	Acres in MCP Urban Area	Acres in MCP Service Area	Percent in MCP Urban Area	Percent of Level in MCP Service Area
Low severity	147,136	279,436	53%	53%
Moderate severity	93,016	146,578	63%	28%
High severity	48,390	66,823	72%	13%
Very high severity	20,668	25,396	81%	5%
Maximum severity	4,764	5,916	81%	1%
Total	313,975	524,149	60%*	—

*The MCP Service Area spans 1,895,082 acres, of which 524,149 acres (28 percent) are classified under heat severity levels. Of the 524,149 acres classified under heat severity levels in the MCP Service Area, 60 percent (313,975 acres) are located within the MCP Urban Area.

Table 14: Heat severity distribution across four focal communities within the MCP Urban Area, showing acreage and severity levels by city. As shown in the bottom row, between 43 percent and 56 percent of the total area of each focal community is within a severe heat level.

Heat Severity by Focal Community				
313,975 acres of heat severity areas are within the MCP Urban Area				
Heat Severity Level	Lawrence Acres (percent)	Lowell Acres (percent)	Manchester Acres (percent)	Nashua Acres (percent)
Low severity	981 (37%)	1,145 (25%)	4,210 (42%)	4,150 (47%)
Moderate severity	789 (29%)	1,505 (33%)	2,555 (25%)	2,466 (28%)
High severity	610 (23%)	1,310 (28%)	2,200 (22%)	1,254 (14%)
Very high severity	250 (9%)	570 (12%)	995 (10%)	821 (9%)
Maximum severity	48 (2%)	88 (2%)	63 (1%)	81 (1%)
Total	2,677 (1%*)	4,618 (1%*)	10,023 (3%*)	8,771 (3%*)
*Percentage of city's heat severity area relative to the total heat severity area within the MCP Urban Area				
Percent of city area with heat severity ranking	56%	50%	45%	43%

Table 15: Overlap of MCP Service Area heat severity levels with CCR priority areas. Percentages indicate the proportion of CCR focal and supporting lands within each heat severity category, highlighting areas most exposed to heat impacts.

Overlap of MCP Service Area's Heat Severity Levels with CCR Priority Areas							
Heat Severity Level	Tier 1 CCR Focus Area Overlap (Acres)	Tier 2 CCR Supporting Lands Overlap (Acres)	Total CCR Priority Overlap (Acres)	Total MCP Service Area's Heat Severity Area (Acres)	Percent Tier 1 Overlap	Percent Tier 2 Overlap	Percent Total CCR Overlap
Low severity	13,608	36,871	50,480	279,436	5%	13%	18%
Moderate severity	19,849	34,306	54,155	146,578	14%	23%	37%
High severity	17,518	15,212	32,730	66,823	26%	23%	49%
Very high severity	9,867	13,464	23,331	25,396	39%	53%	92%
Maximum severity	2,079	3,284	5,363	5,916	35%	56%	91%
Total	62,921	103,137	166,058	524,149	12%	20%	32%

Flood Storage and Risk Mitigation

The Flood Storage and Risk Mitigation analysis identifies areas within the MCP service area that are most vulnerable to flooding and prioritizes lands that can help reduce flood risk through nature-based solutions. This approach combines FEMA 100-year flood zone¹¹ mapping with models of pluvial flooding (rainfall-driven runoff) and fluvial flooding (river and stream overflow) and weights zones by development type and flood depth to assess potential impacts. It also accounts for future conditions by projecting sea level rise impacts under a 2050 100-year storm scenario and distinguishes developed from undeveloped flood-prone areas. Finally, the analysis highlights natural flood storage lands—such as wetlands and riparian zones with gentle slopes and pervious surfaces—that can absorb and slow floodwaters, providing critical opportunities for resilience strategies like wetland restoration and green infrastructure.

Flood Storage and Risk Mitigation (FSRM) areas within the MCP Service Area represent a significant portion of the landscape, offering critical opportunities to build resilience by intervention in these zones. Nearly one quarter (23 percent, or 431,706 acres) of the MCP service area is a flood storage and risk mitigation area. These lands are concentrated in the census-defined urban areas, with more than one-third (37 percent, or 159,212 acres) of the MCP Urban Area is a flood storage and risk mitigation area. This concentration underscores the importance of integrating flood mitigation strategies into developed landscapes, where impervious surfaces and dense infrastructure increase vulnerability to flooding. Protecting and enhancing these areas through nature-based solutions such as wetland restoration and green infrastructure can play a vital role in reducing flood risk and improving community resilience.

Table 16 highlights how much of these FSRM areas are included within Community Climate Resilience (CCR) priorities. Across the MCP Service Area, 16 percent of FSRM areas overlap CCR priority areas, including 10 percent in Tier 1 focal areas and six percent in Tier 2 supporting lands. Within the MCP Urban Area, the alignment is even stronger: 33 percent of FSRM lands fall within CCR priorities, with 22 percent in Tier 1 and 11 percent in Tier 2. These figures show that advancing CCR priorities can significantly contribute to flood risk reduction, as one-third (33 percent) of FSRM areas within the MCP Urban Area fall within CCR themes—creating opportunities for strategies that deliver both resilience and flood mitigation benefits.

The intersection of Flood Storage and Risk Mitigation areas with CCR priorities reveals strong alignment between resilience priorities and flood risk reduction opportunities within the project's four focal communities. At the community scale, Table 17 shows that Lawrence has the highest proportion of overlap, with 84 percent of its FSRM lands falling within CCR priorities—including 80 percent in Tier 1 focal areas. Lowell follows with 71 percent, while Nashua and Manchester show moderate alignment at 54 percent and 50 percent, respectively. This overlap indicates opportunities for dual-benefit projects such as wetland restoration, green infrastructure and park development that advance both climate resilience and flood mitigation goals.

Additionally, Table 17 highlights the proportion of each focal community's total land area that contains overlapping FSRM and CCR priorities. The frequency of this overlap in cities is 33 percent of land cover in Lawrence; 17 percent of Lowell; 11 percent of Nashua; and 10 percent of Manchester. These percentages highlight the scale of resilience opportunities within each community to guide municipal prioritization toward areas where integrated strategies—such as wetland restoration, green infrastructure and park development—can address both flooding and climate resilience. This overlap emphasizes the potential for targeted investments that deliver benefits to communities and nature.

¹¹ Federal Emergency Management Agency. "National Flood Hazard Layer: 100-Year Flood Zone." GIS data, FEMA, 2025. <https://msc.fema.gov/nfhl>. Accessed January 2025.

Table 16: Overlap of Community Climate Resilience Priorities and Flood Storage and Risk Mitigation Areas. This table summarizes the extent to which Flood Storage and Risk Mitigation (FSRM) areas fall within Community Climate Resilience (CCR) priority areas across the MCP Service Area and MCP Urban Area. Overlap is reported for Tier 1 CCR focal areas and Tier 2 supporting lands, showing both acreage and percentage of FSRM areas within these CCR themes. The combined totals highlight where flood mitigation areas align most strongly with climate resilience priorities by showing how much of the FSRM areas are included within CCR themes.

Overlap of Community Climate Resilience (CCR) Priorities and Flood Storage and Risk Mitigation (FSRM) Areas across MCP Service and Urban Areas							
*Of the 431,706 FSRM acres in the MCP Service Area, 159, 212 acres are within the MCP Urban Area.							
FSRM Area Context*	Total FSRM Area (Acres)	Tier 1 CCR Focal Areas overlap (Acres)	Percent Tier 1 Overlap	Tier 2 CCR Supporting Lands overlap (Acres)	Percent Tier 2 Overlap	Total CCR Priority Overlap (Acres)	Percent Total CCR Overlap
MCP Service Area	431,706	41,614	10%	24,077	6%	65,691	16%
MCP Urban Area	159, 212	35,625	22%	17,433	11%	53,058	33%

Table 17: Overlap of CCR Priorities in Focal Community FSRM Areas. This table shows how Flood Storage and Risk Mitigation (FSRM) areas within the four focal communities overlap with Community Climate Resilience (CCR) priorities. It reports acreage and percentage of overlap for Tier 1 CCR focal areas and Tier 2 supporting lands and compares these figures to each community's total land area. These comparisons show opportunities to improve flood protection and climate resilience by using land in ways that serve multiple purposes—such as parks that also store stormwater or green spaces that reduce flood risk.

Overlap of CCR Priorities in Focal Community FSRM Areas									
City	Total FSRM Area (Acres)	Tier 1 Overlap (Acres)	Percent Tier 1 Overlap	Tier 2 Overlap (Acres)	Percent Tier 2 Overlap	Total CCR Priority Overlap (Acres)	Percent Total CCR Overlap	Total Area of City (Acres)	Percent of City Area with Overlap Areas
Lawrence	1,840	1,470	80%	79	4%	1,549	84%	4,753	33%
Lowell	2,158	1,227	57%	311	14%	1,538	71%	9,306	17%
Manchester	4,524	1,726	38%	552	12%	2,278	50%	22,355	10%
Nashua	3,998	1,591	40%	567	14%	2,158	54%	20,305	11%

Green Space Opportunities

The Green Space Opportunities input dataset for the Community Climate Resilience (CCR) theme uses several datasets to determine opportunities to create or improve green spaces in the Merrimack River Watershed. The Trust for Public Land's ParkServe Priority Areas¹² for New Parks dataset identifies locations where new parks and recreational spaces can deliver the greatest benefits. This dataset incorporates climate risk indicators and environmental variables—such as heat island intensity—to prioritize areas with the highest need for green space. The analysis considers non-canopy land and pervious surfaces to locate areas where tree planting and park development can reduce urban heat and improve community resilience. By focusing on these elements, the layer highlights opportunities to expand access to green space while addressing climate vulnerabilities.

Green Space Opportunity Areas represent a major component of the critical opportunities that advance climate resilience while improving community livability. More than one-third (34 percent, or 650,730 acres) of the MCP Service Area has opportunities for green space expansion or improvement. These lands are concentrated in the MCP

¹² Trust for Public Land. "ParkServe." GIS data, Land and People Lab, 2025. ArcGIS Hub, <https://hub.arcgis.com/maps/TPL::trust-for-public-lands-parkserv/explore>. Accessed January 2025.

an Area and frequently overlap with Community Climate Resilience (CCR) priorities, including 8 percent in Tier 1 focal areas and 14 percent in Tier 2 supporting lands (Table 18). Within the MCP Urban Area, the alignment is even stronger: 27 percent of Green Space Opportunity Areas fall within CCR priority lands, with 11 percent in Tier 1 and 17 percent in Tier 2. This overlap indicates that efforts to expand green space in urban areas can significantly contribute to climate resilience objectives.

At the community scale, Table 19 illustrates how Green Space Opportunity Areas intersect with CCR priorities and how these overlaps compare to each city's total land area. Lawrence shows the highest proportion of overlap, with 69 percent of its green space opportunity areas overlapping CCR priorities—51 percent within Tier 1 focal areas. Lowell follows with 54 percent, while Nashua and Manchester show moderate alignment at 48 percent and 37 percent, respectively. Relative to total city area, these overlaps represent 21 percent of Lawrence's land base, 24 percent in Lowell, 26 percent in Nashua and 19 percent in Manchester. These figures inform municipal-scale prioritization of integrated strategies such as park development, habitat restoration and green infrastructure that deliver dual benefits for resilience and community well-being.

Table 18: Overlap of Community Climate Resilience (CCR) Priorities and Green Space Opportunity Areas. This table summarizes the extent to which Green Space Opportunity Areas within the MCP Service Area and MCP Urban Area overlap with CCR priorities. Overlap is reported for Tier 1 CCR focal areas and Tier 2 supporting lands, showing both acreage and percentage of green space areas that fall within CCR themes. The combined totals highlight where green space initiatives can advance climate resilience objectives, offering opportunities for integrated strategies such as park development, habitat restoration and green infrastructure in areas that also support CCR priorities.

Overlap of Community Climate Resilience (CCR) Priorities and Green Space Opportunity Areas.							
*Of the 650,730 Green Space Opportunity acres in the MCP Service Area, 463,050 acres are within the MCP Urban Area.							
Green Space Opportunity Area Context*	Total Green Space Area (Acres)	Tier 1 CCR Focal Areas overlap (Acres)	Percent Tier 1 Overlap	Tier 2 CCR Supporting Lands overlap (Acres)	Percent Tier 2 Overlap	Total CCR Priority Overlap (Acres)	Percent Total CCR Overlap
MCP Service Area	650,730	55,028	8%	92,192	14%	147,220	23%
MCP Urban Area	463,050	49,085	11%	76,754	17%	125,839	27%

Table 19: Overlap of CCR Priorities in Focal Community Green Space Opportunity Areas. This table shows how Green Space Opportunity Areas within the four focal communities overlap with Community Climate Resilience (CCR) priorities. It reports acreage and percentage of overlap for Tier 1 CCR focal areas and Tier 2 supporting lands and compares these figures to each community's total land area. These comparisons highlight opportunities to integrate green space initiatives with climate resilience strategies such as park development, green infrastructure and habitat restoration.

Overlap of CCR Priorities in Focal Community Green Space Opportunity Areas									
City	Total Green Space Opportunity in City (Acres)	Tier 1 CCR Overlap (Acres)	Percent Tier 1 Overlap	Tier 2 CCR Overlap (Acres)	Percent Tier 2 Overlap	Total CCR Priority Overlap (Acres)	Percent Total CCR Overlap	Total Area of City (Acres)	Percent of City Area with Overlap Areas
Lawrence	1,479	750	51%	269	18%	1,019	69%	4,753	21%
Lowell	4,082	1,250	31%	969	24%	2,219	54%	9,306	24%
Manchester	11,355	2,130	19%	2,078	18%	4,208	37%	22,355	19%
Nashua	11,092	2,390	22%	2,939	26%	5,329	48%	20,305	26%

Community Assets

The Community Assets input dataset for the Community Climate Resilience (CCR) theme identifies structures (such as dams and culverts) as critical community assets that can also pose significant flood risks. Culverts and dams influence water flow and storage and when undersized, aging or poorly maintained, they can become bottlenecks that exacerbate flooding during heavy rainfall or storm events. By mapping their locations and integrating them into the CCR analysis, the plan highlights areas where infrastructure improvements or nature-based solutions—such as riparian restoration or floodplain reconnection—can reduce vulnerability and enhance resilience. Recognizing these assets as potential causes of flooding ensures that resilience planning addresses both nature and infrastructure.

The community assets and their buffered areas cover just two percent of the MCP Service Area (31,769 acres), with more than half (53 percent, or 16,687 acres) falling within the MCP Urban Area. As shown in Table 20 within this footprint, over half—16,248 acres (51 percent)—overlap CCR priority areas, including 11,257 acres (35 percent) in Tier 1 focal areas and 4,992 acres (16 percent) in Tier 2 supporting lands. The overlap is even more pronounced in urban areas: 74 percent of buffered assets intersect CCR priorities, with 58 percent in Tier 1. This pattern underscores that urban communities face the greatest combined infrastructure and climate vulnerability, making them high-value targets for resilience investments.

At the focal community scale, the alignment is notable (see Table 21). Lawrence shows 90 percent overlap between buffered assets and CCR priorities, with 88 percent in Tier 1 focal areas. Lowell follows at 81 percent, Manchester at 76 percent and Nashua at 73 percent. These figures indicate that nearly all critical infrastructure in these communities is located within areas prioritized for climate resilience. For municipal decision makers, this means that infrastructure projects—such as culvert replacements or dam safety improvements—can be strategically paired with conservation actions to deliver multiple benefits: reducing flood risk, protecting community assets and enhancing ecological resilience.

Table 20: Overlap of Community Climate Resilience (CCR) priorities with buffered community asset areas in the MCP Service Area and MCP Urban Area. The table shows that buffered assets cover 31,769 acres (two percent of the MCP Service Area), with more than half located in urban areas. Overlap with CCR priorities is substantial—51 percent across the service area and 74 percent within urban areas—highlighting where infrastructure improvements and conservation actions can be most effectively targeted.

Overlap of Community Climate Resilience (CCR) Priorities and Community Asset Buffered Areas							
*Of the 31,769 Community Asset Buffered Area acres in the MCP Service Area, 16,687 acres are within the MCP Urban Area.							
Community Asset Buffered Areas Context*	Total Community Asset Buffered Area (Acres)	Tier 1 CCR Focal Areas overlap (Acres)	Percent Tier 1 Overlap	Tier 2 CCR Supporting Lands overlap (Acres)	Percent Tier 2 Overlap	Total CCR Priority Overlap (Acres)	Percent Total CCR Overlap
MCP Service Area	31,769	11,257	35%	4,992	16%	16,248	51%
MCP Urban Area	16,687	9,595	58%	2,761	17%	12,356	74%

Table 21: Overlap of CCR priorities with buffered community asset areas in focal communities. The table shows that nearly all critical infrastructure in these communities falls within CCR priority zones, with Lawrence at 90 percent overlap, Lowell at 81 percent, Manchester at 76 percent and Nashua at 73 percent. High percentages in Tier 1 focal areas (ranging from 60 percent to 88 percent) highlight opportunities to pair infrastructure upgrades with conservation actions for maximum resilience benefits.

Overlap of CCR Priorities and Buffered Community Asset Areas in Focal Communities							
Focal Community	Total Community Asset Buffered Area within Focal Community (Acres)	Tier 1 CCR Focal Areas Overlap (Acres)	Percent Tier 1 Overlap	Tier 2 CCR Supporting Lands overlap (Acres)	Percent Tier 2 Overlap	Total CCR Priority Overlap (Acres)	Percent Total CCR Overlap
Lawrence	167	147	88%	3	2%	150	90%
Lowell	296	202	68%	37	12%	239	81%
Manchester	563	337	60%	90	16%	427	76%
Nashua	432	270	62%	47	11%	317	73%

CONCLUSION: ADVANCING A SHARED VISION FOR THE MERRIMACK RIVER WATERSHED

The Merrimack River watershed is one of New England's most ecologically and socially significant landscapes—and one of the most threatened. With more than 2.6 million residents and over half a million people relying on the Merrimack for drinking water, the stakes for conservation and climate resilience are high. Accelerating climate change coupled with development pressures will intensify flooding, heat vulnerability and water quality risks. The 2025 Merrimack Watershed Conservation Plan responds to these challenges with a science-based, community-informed framework that identifies where conservation actions can deliver the greatest benefits for both people and nature.

This update builds on the 2014 plan by expanding its scope beyond undeveloped lands to include urban and developed areas—places where climate vulnerabilities and conservation opportunities converge. The rural-to-urban gradient within the Merrimack River watershed presents unique challenges: urban areas face heightened risks from flooding, extreme heat and loss of green space, yet they also offer significant opportunities for resilience through tree planting, green infrastructure and restoration of natural systems. These interventions strengthen ecological connectivity, reduce climate and flood risks, protect water quality and mitigate heat. By integrating community input, this plan ensures that potential interventions enhance quality of life, improve public health and support local economies.

FROM PLANNING TO ACTION

Building a climate-resilient Merrimack River watershed will require collaboration across sectors and sustained investment. Municipal leaders, conservation practitioners and community-based organizations can take the following steps:

- **Integrate nature-based solutions into municipal planning** to reduce flood risk, mitigate heat and improve stormwater management. While impactful throughout the watershed, Community Climate Resilience needs are greatest in urban areas.
- **Prioritize land protection and restoration in high-value areas** identified in the plan, especially those that deliver multiple benefits for people and nature that maintain biodiversity and connectivity.
- **Expand tree canopy and green space in urban areas** to address heat vulnerability and improve community health.
- **Safeguard drinking water sources** by conserving critical catchments and implementing restoration strategies in vulnerable areas. This will also reduce long-term treatment costs.
- **Strengthen partnerships with community-based organizations** to ensure conservation strategies reflect local priorities and build long-term support.

APPENDICES

Appendix 1: Project team Organization

Appendix 2: Polling Findings and Data

Appendix 3: Community Engagement

Appendix 4: Spatial Methodology

Appendix 5: Conservation Status and Trends

APPENDICES

APPENDIX 1: PROJECT TEAM ORGANIZATION

The Nature Conservancy wishes to acknowledge our past and present TNC Colleagues who supported this effort, including:

Emma Gildesgame, Co-lead

Anna Ormiston, Co-lead

Ally Snell, lead of Community Engagement

Alison Bowden

Holly Costello

Charles DeCurtis

Jessica Dietrich

Loren Dowd

Katie Folts

Sarah Garlick

Megan Gordon

Susie Hackler

Meredith Hatfield

Megan Latour

Melissa Leszek

Tina McCarthy

Jim O'Brien

Jessica Rice Healy

Rachel Rouillard

Pete Steckler

Ben Sweeney

Matt Thorne

Sheila Vargas

Appendix 2: Summary of Key Findings from a 2023 Survey of Urban Residents in the Merrimack River Watershed


An April 2023 survey of 400 residents in four key cities in the Merrimack River watershed (Lawrence and Lowell, MA, and Manchester and Nashua, NH) conducted by the bipartisan research team of FM3 Research (D) and New Bridge Strategy (R) demonstrates that **residents in these areas have a positive impression of rivers in their area**. A solid majority of residents tell us that the phrases “important to my city,” “easy to get to,” “culturally important,” and “important to me personally,” describe their local rivers well. Only 13 percent describe flooding as an extremely or very serious issue in their area, and 21 percent say the same about extreme heat. However, when asked if these problems have changed in the last five to ten years, nearly one-third tell us extreme heat in their community has gotten worse.

Specifically, the survey found that:

- Over six-in-ten residents overall (65 percent), and nearly eight-in-ten in Lawrence (78 percent) report personally experiencing the effects of climate change. Among those who say they have personally been impacted by flooding or extreme heat, that number rises to more than seven-in-ten.
- The cost of living, crime and gangs, and public-school quality tops the list of concerns in the area, overshadowing climate change, extreme heat, flooding, and other concerns. While 40 percent of residents or more say the cost of living, crime and gangs, and public-school quality as extremely or very serious issues in their city, only 21 percent say the same about extreme heat and 13 percent about flooding. Lawrence residents are more concerned about extreme heat and flooding compared to other residents, with 28 percent and 27 percent respectively telling us these issues are extremely or very serious.
- Most residents think flooding has stayed about the same over the last five to ten years. A majority say the same about extreme heat, but about a quarter in each city feel it has gotten worse, with New Hampshire residents being more likely to say it has gotten worse. Overall, 14 percent of residents say flooding has gotten better, 8 percent say it has gotten worse, and 76 percent say it is about the same. When asked about extreme heat, 7 percent of residents say it has gotten better, 30 percent say it has gotten worse, and 61 percent say it is about the same.
- One-third of residents report having to stay inside due to extreme heat, with an additional 27 percent saying they know someone else who has. Less than 30 percent of residents have experienced or know someone who has experienced

other heat and flood-related impacts tested, including missing school or work due to extreme heat, having to seek medical care for a heat-related illness, or having their ability to work, place of work, or home impacted by flooding.

- A solid number of residents in each city feel there should be more access to natural areas for outdoor recreation, but not a majority. Feelings about access to rivers and natural areas vary by city; 25 percent in Lowell, 40 percent in Lawrence, 28 percent in Nashua, and 32 percent in Manchester feel there is too little access. Over four-in-ten of the lowest income residents tell us there are too little outdoor places to cool off during the summer; and those with the lowest incomes are more likely to feel this way. Sixty-five percent of those with incomes under \$20,000 per year say there are too little places to cool off during the hottest summer days, compared to 45 percent of the full sample.
- Over half of residents across the four cities (55 percent) report visiting local rivers or parks and natural areas along a river at least once a month. This number is even higher in Lawrence, where nearly two-thirds report visiting these areas at least once a month.
- Residents ascribe positive attributes to rivers in their area. The graph below details how many residents say each attribute describes these areas very or somewhat well.

The following is a list of words and phrases that could describe rivers in your city. For each one, please indicate how well you think it describes those rivers – very well, fairly well, not very well or not at all well.

The positive attributes tested well across all four cities. However, those who never visit local rivers or parks and natural areas along a river are less likely to say the positive attributes describe these areas very or somewhat well.

- Scientists, local teachers, and local environmental organizations top the list of those who residents would trust on issues affecting local rivers and natural areas. Scientists top the list at 71 percent saying they would trust them (40 percent trust a great deal), followed by local teachers (73 percent trust/32

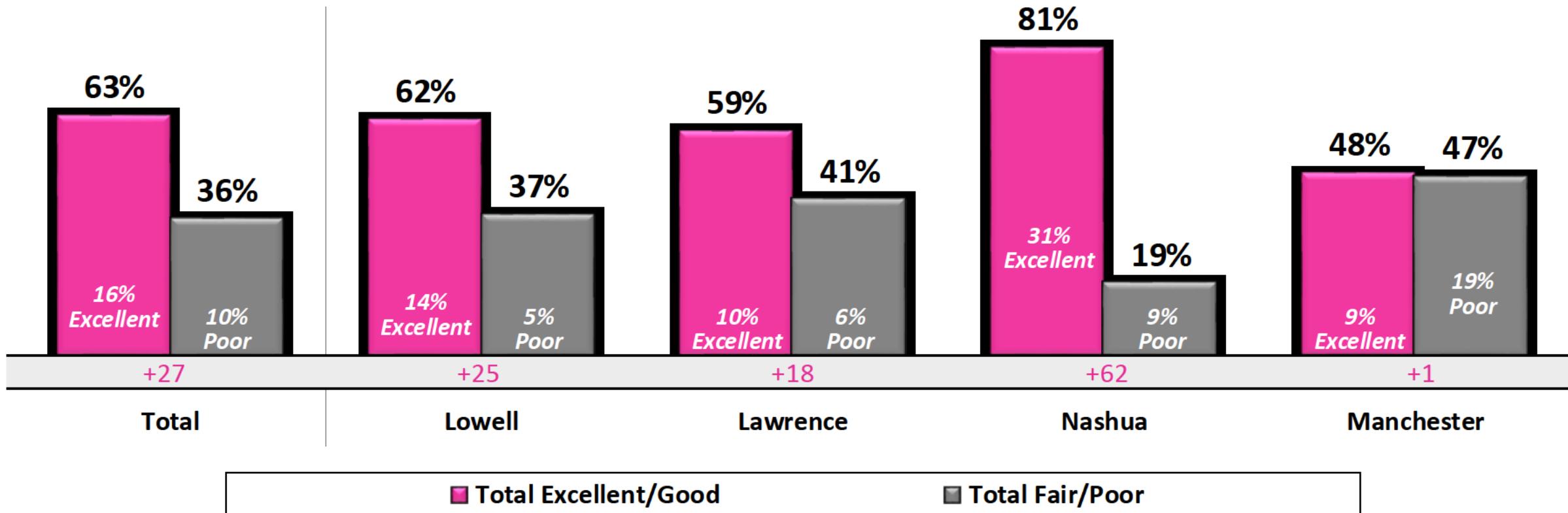
percent trust a great deal), and local environmental organizations (72 percent trust/30 percent trust a great deal).

Summarized Methodology: From April 13-26, 2023, the bipartisan research team of FM3 and New Bridge Strategy completed 400 interviews among residents from Lawrence, MA, Lowell, MA, Manchester, NH, and Nashua, NH. Interviews were conducted online via text invitation as well as on cell phones. The margin of error for the full sample is +/-4.9 percent; margins of sampling error for subgroups within the sample will be larger. Some percentages may sum to more than 100 percent due to rounding.

For complete survey methodology, survey questions, and results, please contact Emma Gildesgame (emma.gildesgame@tnc.org)

Merrimack River Watershed Survey Key Findings

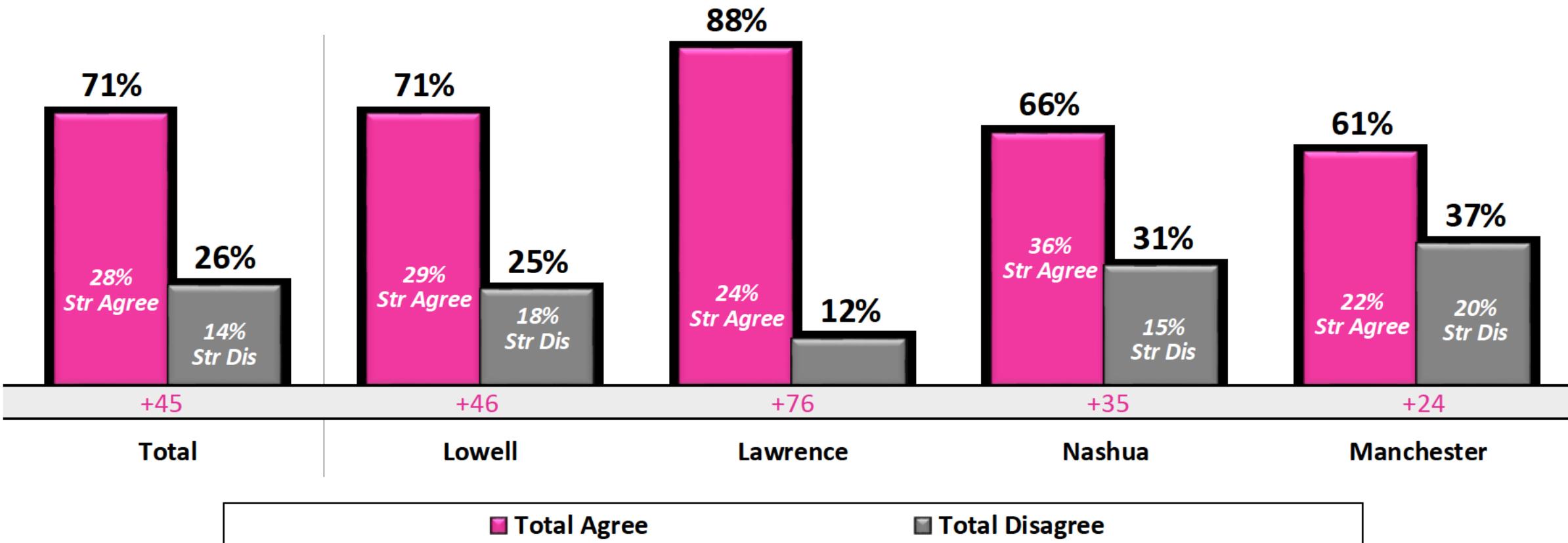
May 2023


FM3
RESEARCH

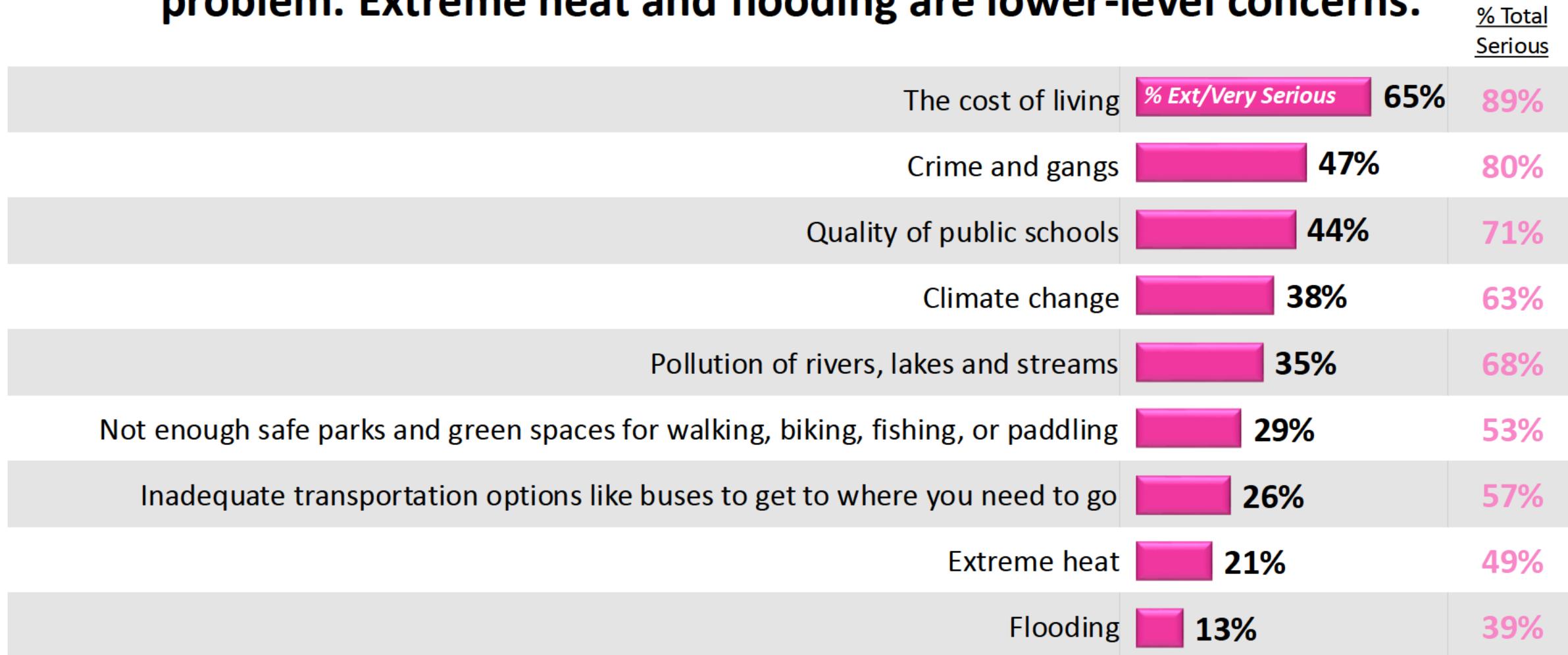
Residents in the Massachusetts cities are more likely to say they have missed work or school due to extreme heat.

<i>Missed work or school due to extreme heat</i>	Lowell	Lawrence	Nashua	Manchester
Applies to me	15%	12%	9%	13%
Applies to someone I know	18%	18%	10%	10%
Does not apply	73%	73%	85%	81%

Do any of the following things apply either to you or to someone you know who lives in your city? You may select both if it applies to you AND someone you know who lives in your city. If one does not apply to you or anyone you know, please check that instead.


Over three-fifths of residents characterize the quality of life in their community as excellent or good. Only Manchester residents are split.

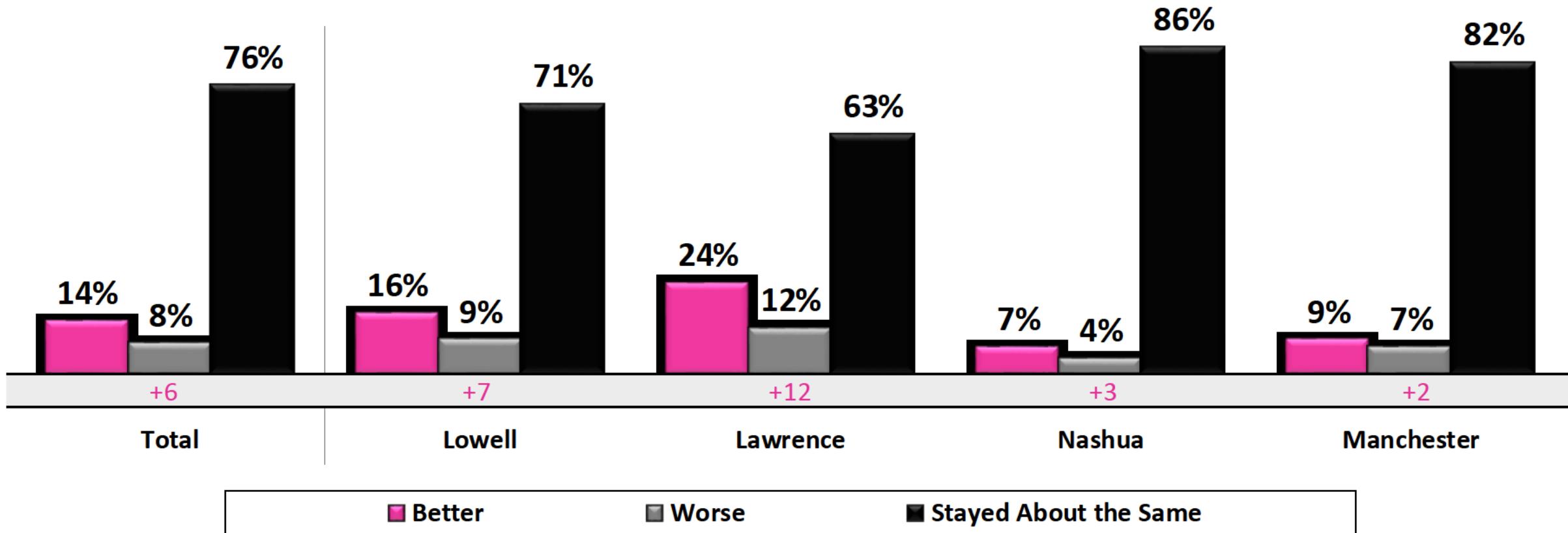
How would you characterize the quality of life in your community, would you say it is...


Most residents, especially in Lawrence, say their voice matters when it comes to decisions made in their community.

"My voice matters when it comes to decisions that are made in my community."

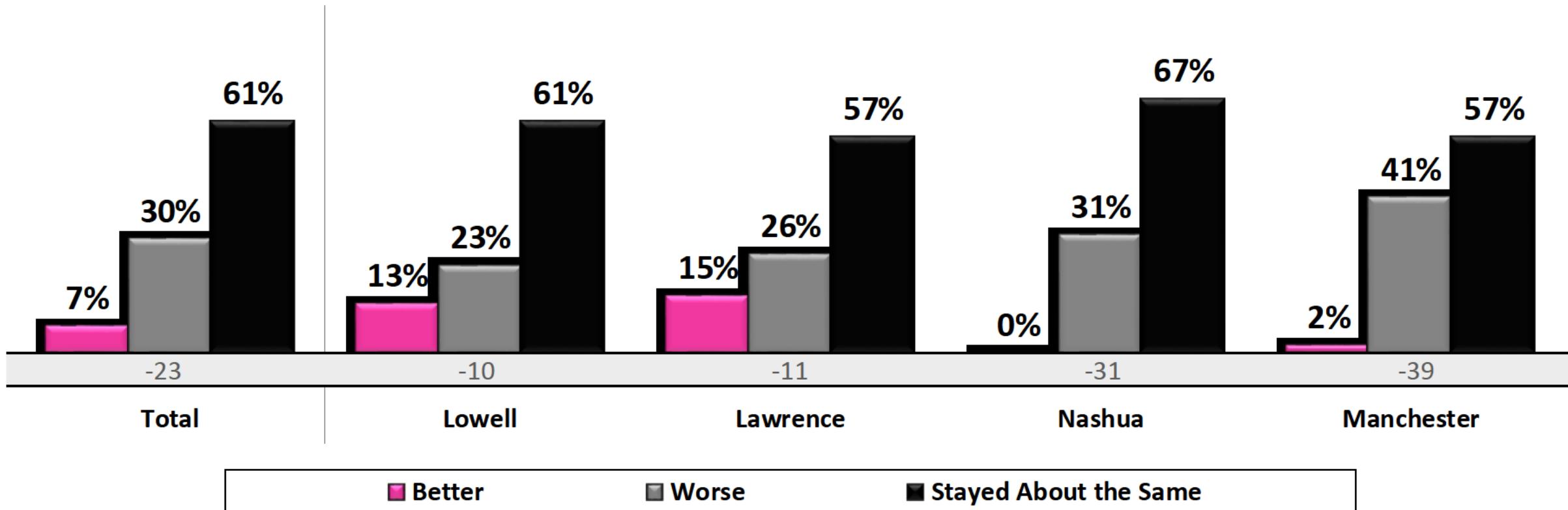
Do you agree or disagree that...

Nearly two-thirds say the cost of living is an extremely or very serious problem. Extreme heat and flooding are lower-level concerns.

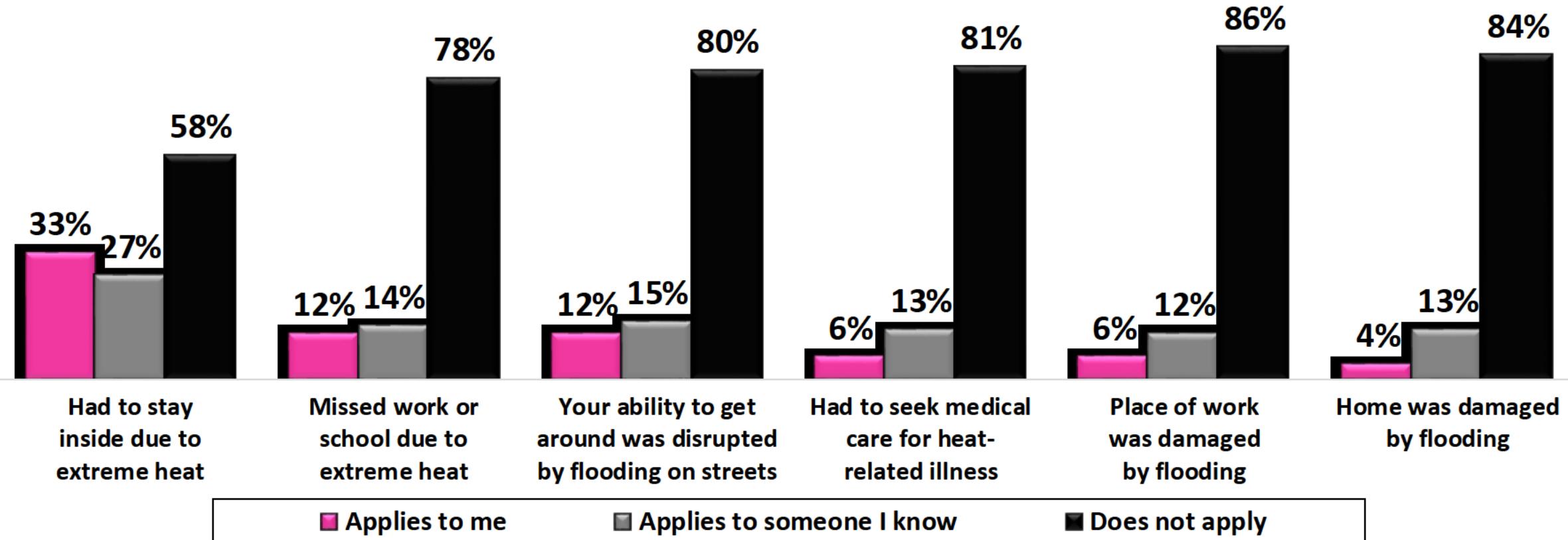

The following list of issues are sometimes said to be problems in your city. Please indicate if you think each issue is an extremely serious problem, a very serious problem, a somewhat serious problem, or not a serious problem in your city.

The cost of living is seen as an extremely or very serious problem by majorities across each city.

% Extremely/Very Serious	Lowell	Lawrence	Nashua	Manchester
The cost of living	70%	58%	59%	73%
Crime and gangs	48%	55%	29%	58%
Quality of public schools	46%	46%	28%	56%
Pollution of rivers, lakes and streams	38%	37%	34%	44%
Climate change	39%	34%	30%	37%
Not enough safe parks and green spaces for walking, biking, fishing, or paddling	35%	27%	19%	35%
Inadequate transportation options like buses to get to where you need to go	25%	34%	18%	27%
Extreme heat	21%	28%	16%	20%
Flooding	14%	27%	6%	7%


The following list of issues are sometimes said to be problems in your city. Please indicate if you think each issue is an extremely serious problem, a very serious problem, a somewhat serious problem, or not a serious problem in your city.

Over the last five to ten years, most residents in each city say flooding has stayed about the same in their community, with some of those in MA communities saying it has gotten better.


Over the last five to ten years, would you say that FLOODING in your community has gotten...

However, at least one-quarter in each city say extreme heat has gotten worse.

Over the last five to ten years, would you say that EXTREME HEAT in your community has gotten...

Extreme heat has caused one-third of residents to stay inside; far fewer have experienced other impacts.

Do any of the following things apply either to you or to someone you know who lives in your city? You may select both if it applies to you AND someone you know who lives in your city. If one does not apply to you or anyone you know, please check that instead.

At least a third of residents in the Massachusetts cities have had to stay inside due to extreme heat.

<i>Had to stay inside due to extreme heat</i>	Lowell	Lawrence	Nashua	Manchester
Applies to me	33%	38%	29%	29%
Applies to someone I know	24%	29%	25%	29%
Does not apply	54%	55%	62%	59%

Do any of the following things apply either to you or to someone you know who lives in your city? You may select both if it applies to you AND someone you know who lives in your city. If one does not apply to you or anyone you know, please check that instead.

Residents in Lowell are the most likely to say that homes getting damaged by flooding is applicable to them or someone they know.

<i>Home was damaged by flooding</i>	Lowell	Lawrence	Nashua	Manchester
Applies to me	8%	4%	3%	3%
Applies to someone I know	23%	13%	9%	9%
Does not apply	72%	84%	90%	91%

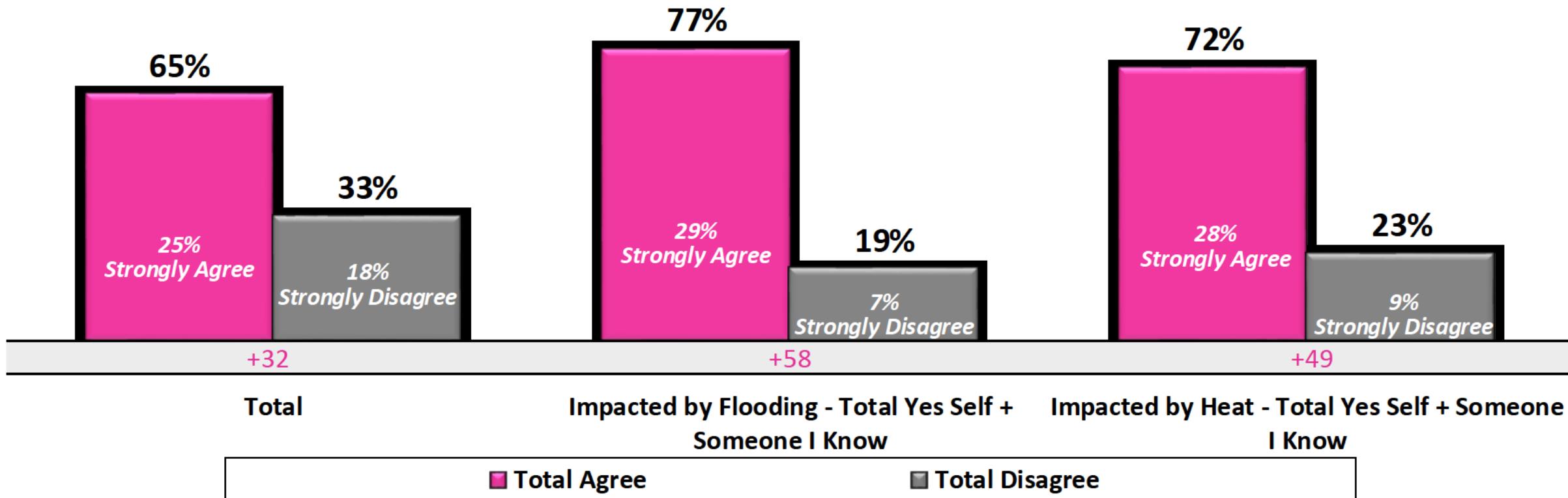
Do any of the following things apply either to you or to someone you know who lives in your city? You may select both if it applies to you AND someone you know who lives in your city. If one does not apply to you or anyone you know, please check that instead.

Staying inside due to extreme heat is the most applicable impact across each city.

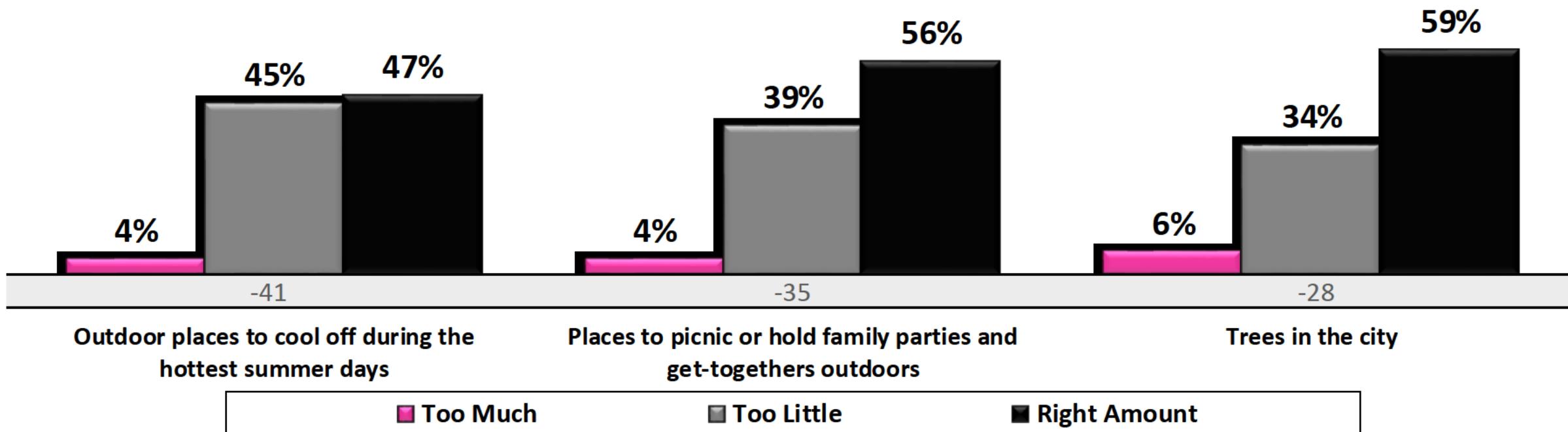
<i>% Applies to me</i>	Lowell	Lawrence	Nashua	Manchester
Had to stay inside due to extreme heat	33%	38%	29%	29%
Missed work or school due to extreme heat	15%	12%	9%	13%
Your ability to get around was disrupted by flooding on streets	16%	11%	10%	10%
Had to seek medical care for heat-related illness	7%	12%	0%	6%
Place of work was damaged by flooding	10%	9%	2%	4%
Home was damaged by flooding	8%	4%	3%	3%

Do any of the following things apply either to you or to someone you know who lives in your city? You may select both if it applies to you AND someone you know who lives in your city. If one does not apply to you or anyone you know, please check that instead.

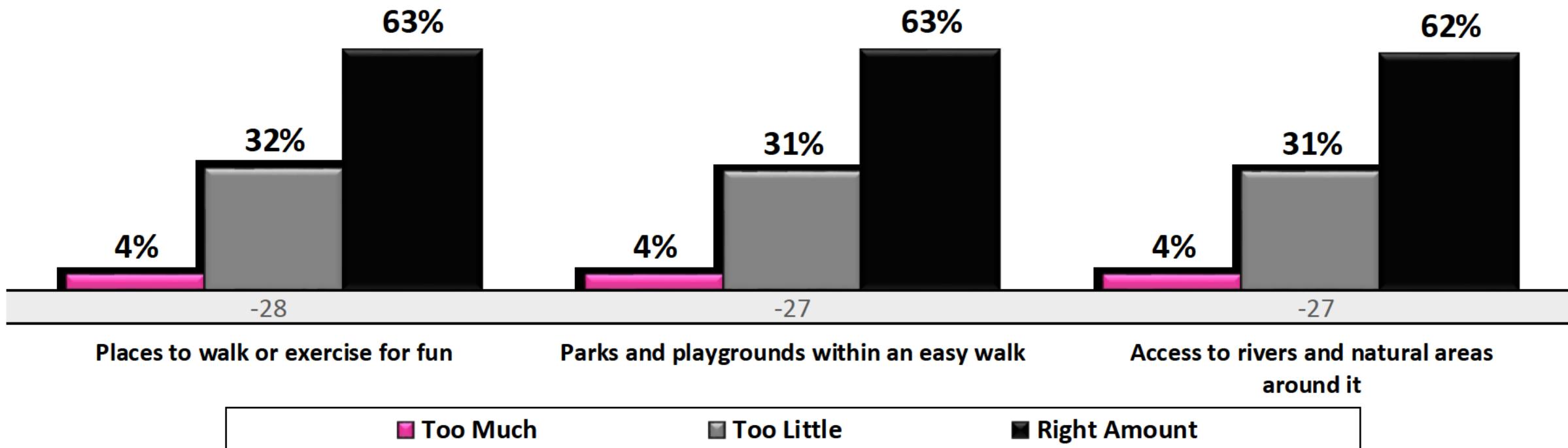
Most residents in each city, including over three-quarters in Lawrence, say they have personally experienced the effects of climate change.


"I have personally experienced the effects of climate change."

How much do you agree or disagree with the following statement:


Around three-quarters of residents who have been impacted by flooding or heat say they have experienced the effects of climate change.

"I have personally experienced the effects of climate change."


How much do you agree or disagree with the following statement:

Nearly half say there are too little outdoor places to cool off during the hottest summer days in their city.

Do you think there is too much, too little, or the right amount of each of the following in your city today?

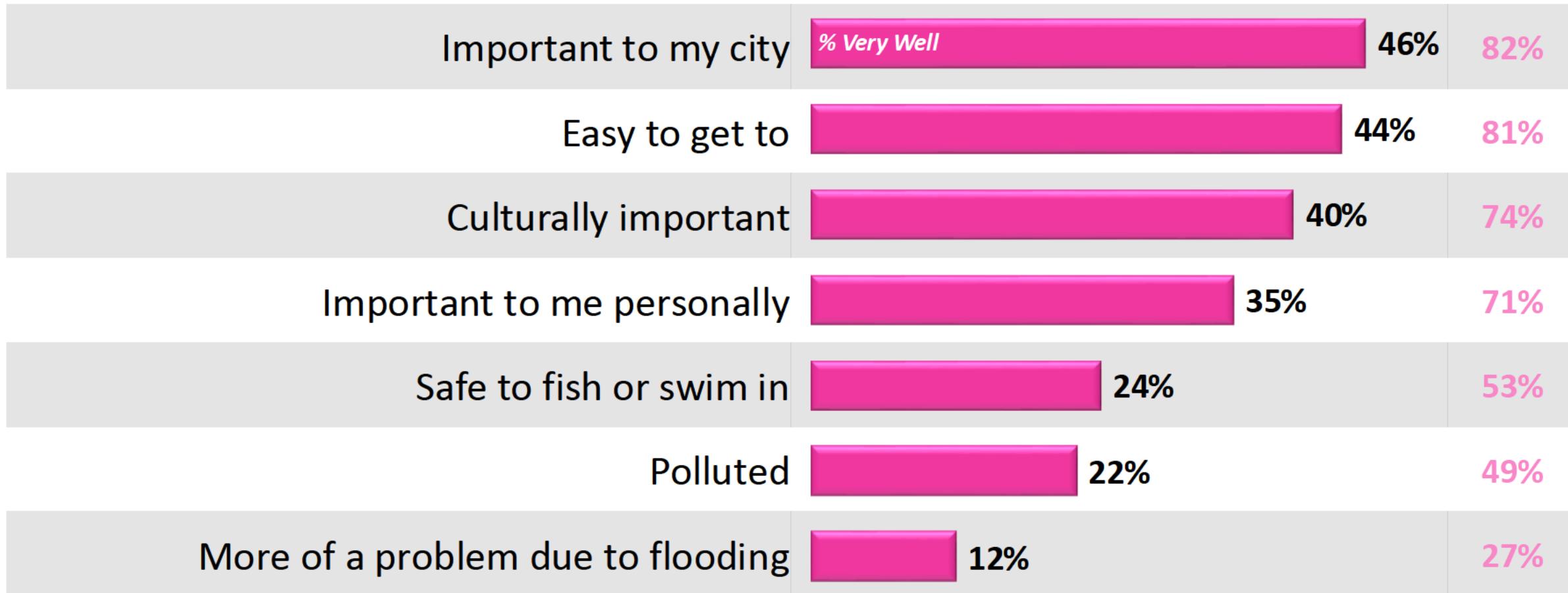
Around one-third of residents say there is too little access to places to walk and exercise, parks and playgrounds, and access to rivers and natural areas in their city.

Do you think there is too much, too little, or the right amount of each of the following in your city today?

Four-in-ten Lawrence residents say there is too little access to rivers and natural areas.

<i>% Too Little</i>	Lowell	Lawrence	Nashua	Manchester
Outdoor places to cool off during the hottest summer days	43%	44%	45%	47%
Places to picnic or hold family parties and get-togethers outdoors	37%	46%	27%	44%
Trees in the city	45%	27%	25%	40%
Places to walk or exercise for fun	37%	29%	27%	35%
Parks and playgrounds within an easy walk	35%	22%	32%	37%
Access to rivers and natural areas around it	25%	40%	28%	32%

Do you think there is too much, too little, or the right amount of each of the following in your city today?


Most residents visit local rivers or parks and natural areas along a river at least once a month, including nearly two-thirds in Lawrence.

	Total	Lowell	Lawrence	Nashua	Manchester
At least once a week	15%	18%	9%	20%	12%
A few times a month	22%	19%	25%	19%	25%
Monthly	18%	17%	31%	12%	11%
A few times a year	34%	31%	33%	36%	34%
Never	12%	14%	2%	12%	17%

How often do you personally visit local rivers or parks and natural areas along a river:

Over two-in-five residents say the rivers in their city are described very well as “important to my city” and “easy to get to.”

% Total
Well

The following is a list of words and phrases that could describe rivers in your city. For each one, please indicate how well you think it describes those rivers – very well, fairly well, not very well or not at all well.

“Important to my city” has over three-fourths majorities in each city saying this phrase describes their rivers well.

% Total Well	Lowell	Lawrence	Nashua	Manchester
Important to my city	83%	77%	82%	85%
Easy to get to	85%	72%	90%	76%
Culturally important	79%	79%	76%	64%
Important to me personally	73%	69%	74%	69%
Safe to fish or swim in	58%	60%	44%	48%
Polluted	59%	56%	44%	38%
More of a problem due to flooding	34%	49%	15%	9%

The following is a list of words and phrases that could describe rivers in your city. For each one, please indicate how well you think it describes those rivers – very well, fairly well, not very well or not at all well.

Those who never visit local rivers or parks and natural areas along a river vary in their descriptions of their city's rivers from those who do visit them.

% Total Well	Visit Parks/Natural Areas Few Times a Month or More	Visit Parks/Natural Areas Monthly	Visit Parks/Natural Areas Few Times a Year	Never Visit Parks/Natural Areas
Important to my city	84%	79%	87%	66%
Easy to get to	86%	78%	86%	55%
Culturally important	78%	76%	77%	50%
Important to me personally	80%	72%	77%	27%
Safe to fish or swim in	54%	57%	62%	18%
Polluted	45%	60%	52%	40%
More of a problem due to flooding	23%	47%	25%	12%

The following is a list of words and phrases that could describe rivers in your city. For each one, please indicate how well you think it describes those rivers – very well, fairly well, not very well or not at all well.

Cleaning local rivers and the natural areas around them is the top recommendation for how to improve local rivers and natural areas.

	# of mentions
Clean/maintain area	39
Increase safety/security	16
Remove homeless from area	11
Greater accessibility	8
They are fine as is	6
More swimming areas/allow swimming	4
More trails/paths for walking	4
Stop drug use in area	4
Allow boating	3
More parks/green space	3
Better snow removal	2
More recreational activities	2
Nothing/Don't know	27

“Clean up and make the place safe.” **Male, Age 45-54, Lowell**

“Upkeep with daily or even weekly cleaning and maintenance.” **Male, Age 35-44, Lawrence**

“Ensuring that it is clean.” **Female, Age 55-64, Nashua**

“More police around.” **Male, Age 18-34, Manchester**

If you were going to make one recommendation about what your city could do to improve local rivers and natural areas around rivers that would have the biggest impact on you and your family, what would it be?

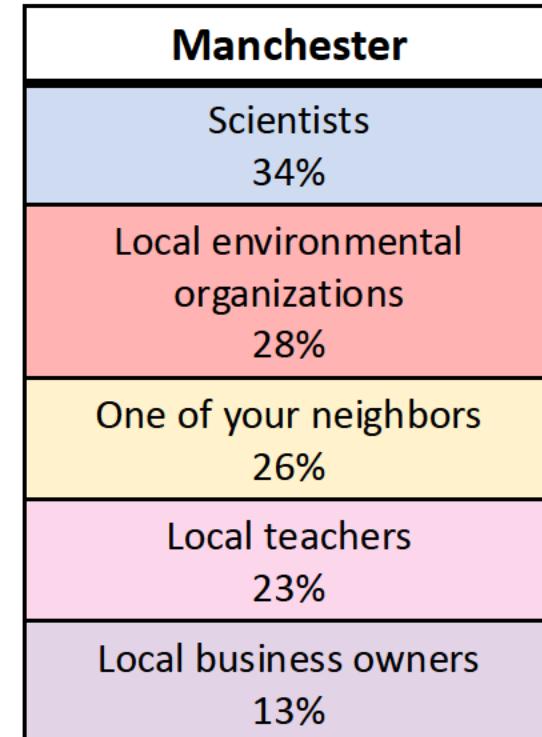
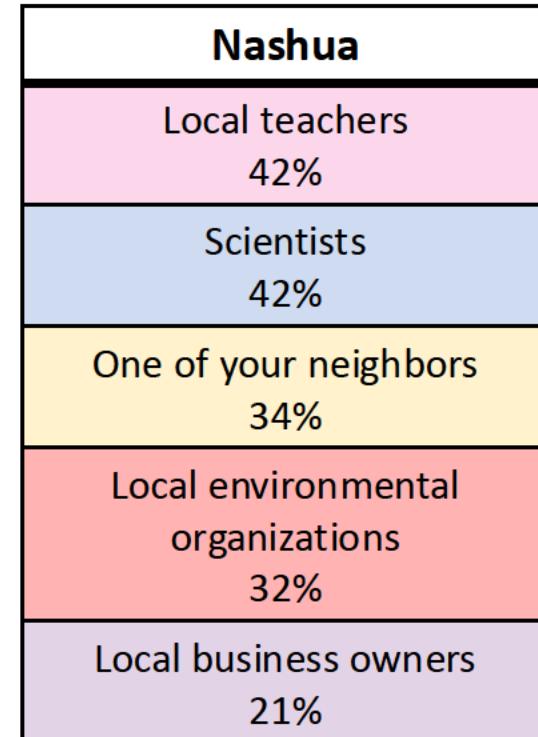
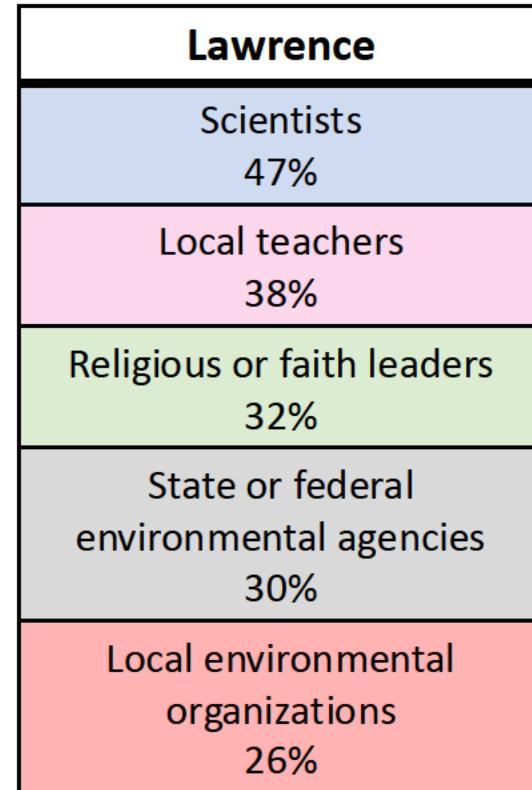
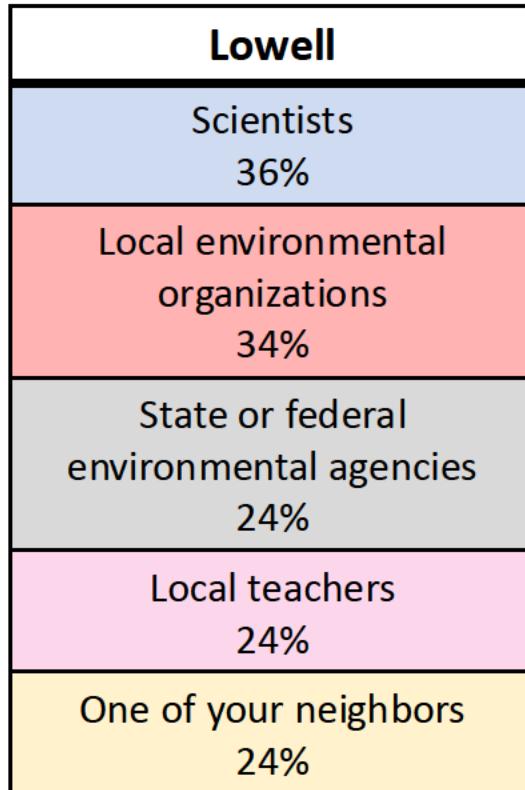
Regardless of city, the top recommendation is cleaning local rivers and the natural areas around them. In Manchester, homelessness is raised as a concern.

<i># of mentions</i>	Total	Lowell	Lawrence	Nashua	Manchester
Clean/maintain area	39	9	12	10	8
Increase safety/security	16	7	2	1	6
Remove homeless from area	11	1	3	0	7
Greater accessibility	8	0	1	5	2
They are fine as is	6	1	4	1	0
More swimming areas/allow swimming	4	1	2	1	0
More trails/paths for walking	4	2	2	0	0
Stop drug use in area	4	2	0	0	2
Nothing/Don't know	27	8	7	6	6

If you were going to make one recommendation about what your city could do to improve local rivers and natural areas around rivers that would have the biggest impact on you and your family, what would it be?

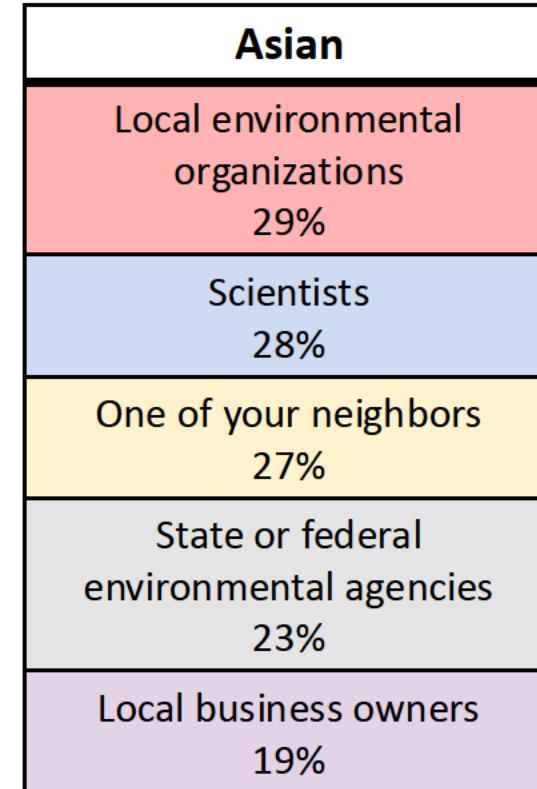
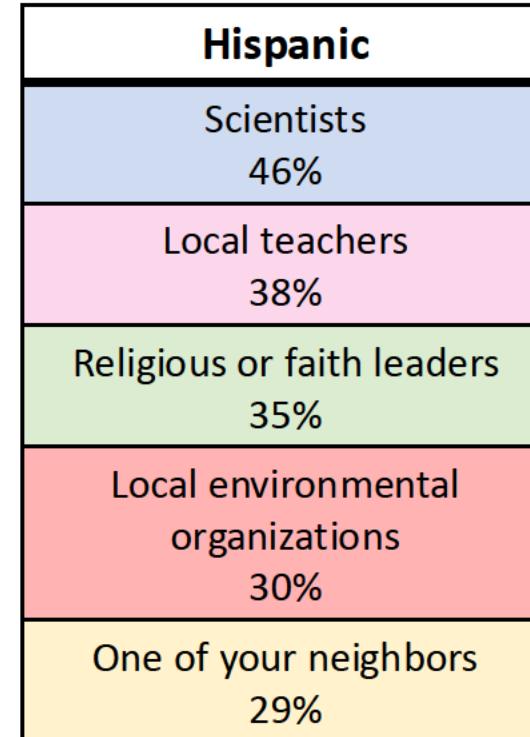
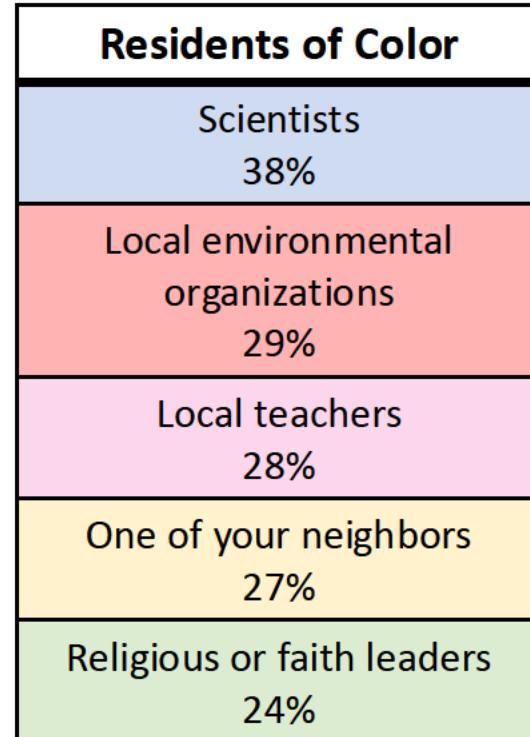
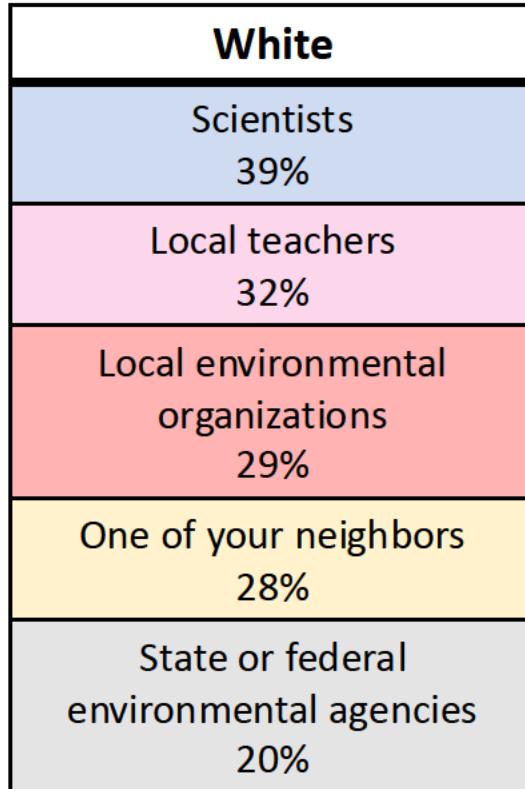
A third of residents are interested in walking or picnicking along rivers. This interest is stronger in the New Hampshire cities.

	Total	Lowell	Lawrence	Nashua	Manchester
Walking or picnicking along rivers	33%	28%	29%	34%	39%
Swimming	19%	20%	23%	15%	18%
Paddling or other boating	15%	17%	6%	24%	14%
Fishing	15%	14%	9%	17%	18%
Bird and wildlife watching	14%	10%	17%	14%	15%
Attending community events	12%	16%	9%	9%	13%
Cooling down there on hot days	11%	11%	19%	6%	10%
All equally	36%	29%	41%	39%	35%





Let's assume there was a community effort to improve and restore local rivers so that there's greater opportunities to recreate, visit, and enjoy local rivers, which two or three activities would you be most interested in?

Two-in-five residents would have a great deal of trust in scientists about issues affecting local rivers and natural areas around rivers.

Next, here is a list of people and organizations that may speak out about issues affecting local rivers and natural areas around rivers. Please tell me if you would generally trust each person or organization's opinion, or if you would be suspicious of it. If you have never heard of the person or organization, or do not have an opinion, you can indicate that instead.





Scientists are trusted a great deal across the area, but MA residents are more likely to trust government agencies while NH residents would trust their neighbors more.

Showing % Trust A Great Deal

Next, here is a list of people and organizations that may speak out about issues affecting local rivers and natural areas around rivers. Please tell me if you would generally trust each person or organization's opinion, or if you would be suspicious of it. If you have never heard of the person or organization, or do not have an opinion, you can indicate that instead.

Nearly half of Hispanic residents would trust scientists a great deal on issues affecting local rivers and natural areas around rivers.

Showing % Trust A Great Deal

Next, here is a list of people and organizations that may speak out about issues affecting local rivers and natural areas around rivers. Please tell me if you would generally trust each person or organization's opinion, or if you would be suspicious of it. If you have never heard of the person or organization, or do not have an opinion, you can indicate that instead.

Lori Weigel & Karoline McGrail
lori@newbridgestrategy.com
karoline@newbridgestrategy.com

Dave Metz
dave@fm3research.com

Appendix

Flooding on streets has disrupted Lowell residents' ability to get around the most.

<i>Your ability to get around was disrupted by flooding on streets</i>	Lowell	Lawrence	Nashua	Manchester
Applies to me	16%	11%	10%	10%
Applies to someone I know	18%	23%	4%	16%
Does not apply	72%	76%	90%	81%

Do any of the following things apply either to you or to someone you know who lives in your city? You may select both if it applies to you AND someone you know who lives in your city. If one does not apply to you or anyone you know, please check that instead.

Those in Lawrence are the most likely to have had to seek medical care for heat-related illness.

<i>Had to seek medical care for heat-related illness</i>	Lowell	Lawrence	Nashua	Manchester
Applies to me	7%	12%	0%	6%
Applies to someone I know	12%	16%	11%	13%
Does not apply	79%	75%	89%	83%

Do any of the following things apply either to you or to someone you know who lives in your city? You may select both if it applies to you AND someone you know who lives in your city. If one does not apply to you or anyone you know, please check that instead.

While workplaces getting damaged by flooding has impacted few residents in the New Hampshire cities, many in Lawrence have been affected.

<i>Place of work was damaged by flooding</i>	Lowell	Lawrence	Nashua	Manchester
Applies to me	10%	9%	2%	4%
Applies to someone I know	15%	20%	7%	6%
Does not apply	82%	75%	92%	93%

Do any of the following things apply either to you or to someone you know who lives in your city? You may select both if it applies to you AND someone you know who lives in your city. If one does not apply to you or anyone you know, please check that instead.

Appendix 3

Community Engagement

Appendix 3a

Input from Community Events

Pages 2-15

Appendix 3b

List of Key Stakeholder Interviews

Pages 16-21

Appendix 3c

Community Mapping Methods & Facilitators Guide

Pages 22-29

Appendix 3d

Unchartered Tutoring - Youth Conservation Maps

Pages 30-38

Appendix 3a: Input from Community Events

These comments are recorded here as they were shared by community members at tabling events, partner meetings, and community mapping events between spring 2024 and spring 2025 verbally in conversations with team members and via open ended questions on posters.

Entries in Lowell and Lawrence tagged with "vision" were specific answers to a prompt asking "What is YOUR vision for the Merrimack River & [City name]?" in both English and Spanish.

Categorization was done after data collection and comments are lightly edited where necessary for clarity or conciseness.

Lowell

Flooding

- Flooding: from the Bridge to Centralville = flooding in basements below university parking at Riverside.
- 2006 Flooding:
 - related to metal boards above dam. Lowell flood owners group fought FERC for more control over the dam boards near the Spaulding House.
 - Major flooding around Rosemont St, Varnum and Brunswick closed.
- "last 5 years" of flooding is the wrong question – the biggest floods in recent years were more than 5 years ago.
- Flood wall protects Centerville not Pawtucketville
- Lawrence and Moore street – flooding
- Flooding at library at Colburn & Merrimack
- Instead of metal barriers [on dams], use wood like the olden days! Old ones bend to allow water passage and prevent flooding (Lowell Flood Group)

Flood Hazards from Community Mapping

A score of 1 indicated little to no flooding, a score of 4 indicates regular flooding.

Location	Comments	Score
Around Rourke bridge	Has occasionally been an area of serious flooding	3
Bowling alley end of Rourke bridge	Floods when river raises	3
Bridge St in front of Market Basket	Deep puddles across both lanes	3
Centralville	Has flooded in past	2
Christian St.	Occ. run off	1
Lexington Bedford Carlisle st.	Flooding	3
Lowell General Hospital	Lots of flooding causing potholes	3
Lowell Riverwalk by Boot Mills	The boardwalk was fully flooded last spring during heavy rain	1
Riverwalk at VFW + Varnum Ave	Occasional flooding	2
Shaw St	Street floods after heavy rain	2

Trash & Pollution

- Cleanups of trash around Boott Mills area
- "The biggest thing is the pollution"
- Lowell Litter Crewe: Trash cleanups – over 200 events, 10,000 hours, 100's of pounds of litter removed
- Vision: Cleaner water
- Vision: No more pollution
- Vision: Community clean-up / litter pickup
- Vision: Less pollution on river
- Vision: CLEAN + GREEN
- Vision: Cleaner water! (x2)
- Vision: Cleaner water – fish without mercury

Recreation & Parks

- Beaver Brook in Dracut is a good place to go.
- Goldstar Park at Bridge St. & VFW highway – local groups working to get \$\$ to make ADA accessible, add pollinator garden
- Vision: Easy fishing
- Vision: Fish! ("I've never seen fish there!")
- Vision: More bike trails along the river (Smoother/better - improve existing trails)
- Vision: More parks! x2
- Vision: Riverwalk Tewksbury town line along Merrimack - Bay Circuit Trail
- Vision: Walkable! Bikeable! Ferries to connect between cities?
- Vision: Dream kayak trip: Lowell → Newburyport

Improved or Additional Green Space from Community Mapping

Location	Comment	Grade
Bruce freeman rail trail	Its a C in Lowell, but an A in Chelmsford	B
Concord River - Lowell Cemetery	Great green space!	C
Concord Riverbank near Gary's restaurant	An oasis in the city of mature and calm	A
Edson Cemetery	Could use more trees!	B
Elm Cemetery	Trees- pleasant- good to walk	3
Esplanade River walk	Beautiful walking path, benches, water views, limited bathrooms	A
Fort Hill Park	Clean; more trails	B
Kerouac Park	Generally in good shape	B
	Performance space, Kerouac literature elements, nice grass!	A
Lowell Cemetery	Pleasant- could have more plants (x3)	3
Lowell Tyngsborough State Forest	Cemetery is generally well maintained "We love the forest!"	3

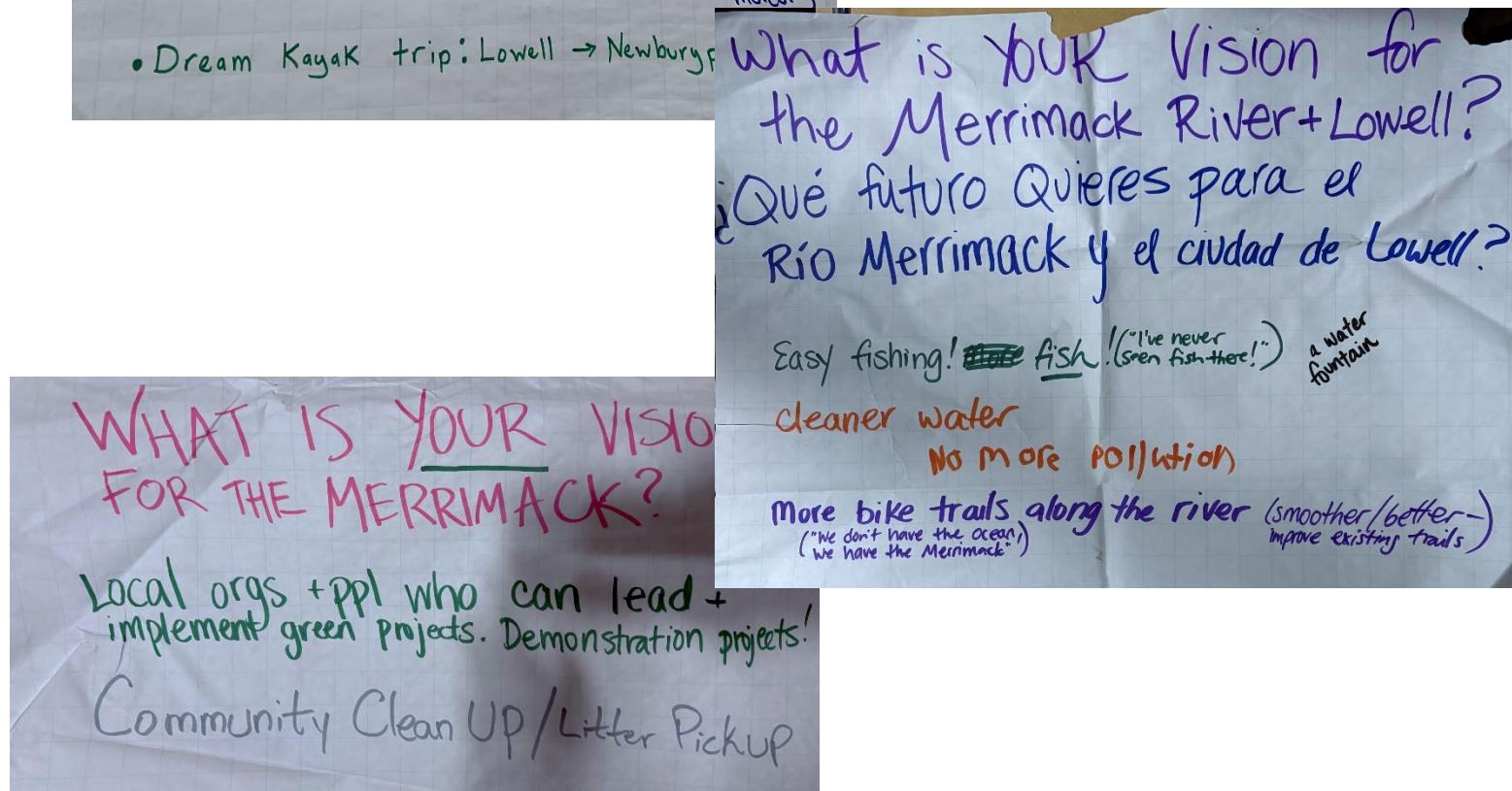
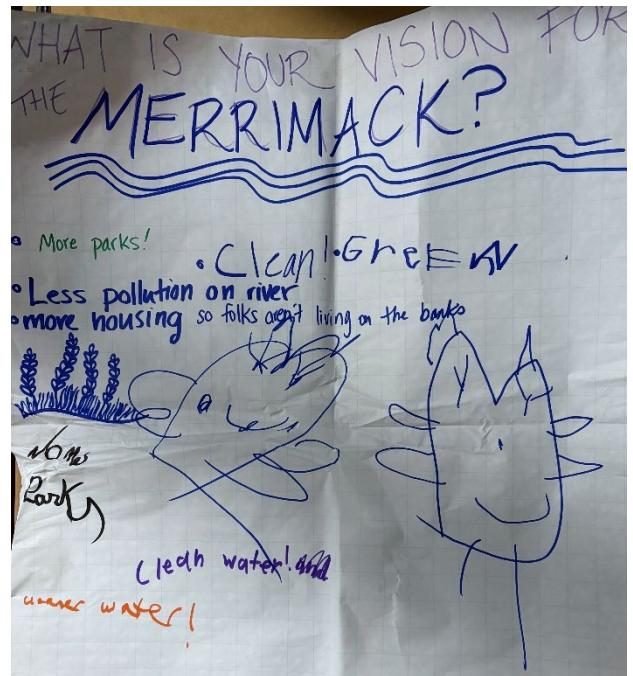
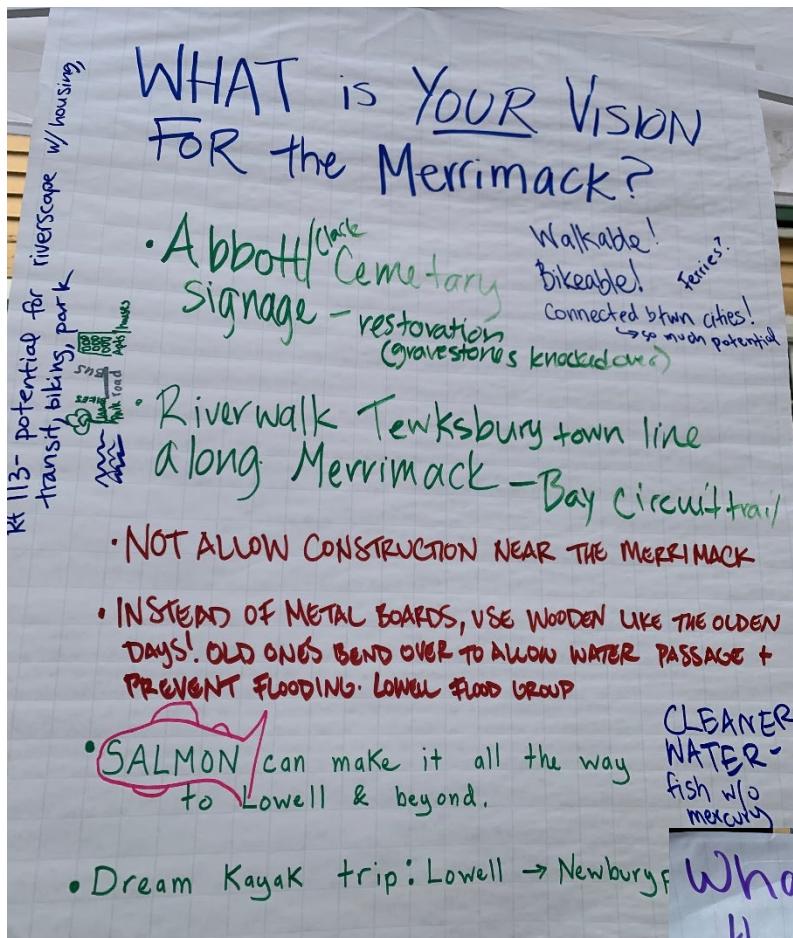
Location	Comment	Grade
Mack Plaza	Not safe for kids - needles	A
Highlands	Need More greenspace in Highlands (x5)	A
Northern Canal walkway	Could use maintenance on path where trees are towards School St end.	F
Park across from Durgin Hall Building	Beautiful river view, picnic areas, no restroom or water nice trees	F
Pawtucket Farm Wildlife Sanctuary	[2 entries gave Pawtucket Farm an A grade with no other notes]	F
River Walk	Filled with good amount of green	F
Riverfront park	Broken curb and would like to see extended	F
Riverwalk	Great green space! Needs maintenance	F
Shedd Park	Lots of green space and cemeteries, but could use more trees and less parking. Why are there individual and specific lots for tennis field, baseball field and kid park?	C
Sheehy Park	Parking lot needs work	B
Sheehy park	Needs graded	A
South common	More maintenance/ongoing/ bad reputation	A
St. Patrick Cemetery	Large well maintained patio, very open	B
	Lots of trees- pleasant- good to walk	C
VFW Highway Greenery	Clean but limited trees	C
Victorian Garden	Could use pollinator garden, benches, etc.	B
	No landscape maintenance. Broken benches, needles	3
Wetlands at Rt 495 & Boylston Lane	Many trees; wet	D

Tree Coverage from Community Mapping

A score of 1 indicated good tree coverage, a score of 4 indicates no trees or a need for more trees.

Location	Comment	Score
Cambodia Town	Trees could line Street	1
Canion St	Not enough trees	4
Centerville River walk	Not enough trees	4
Claybrook area/ Varnum Ave/ Pawtucket Blvd.	Trees need care/ pruning/ some appear unhealthy	3
Duck Islands - beach/green space	Great spot	0
Dunbar Ave	on map but not spreadsheet	0
Fort hill, cemetery, and Shedd park	Plenty of trees	1
	Pavement cracked 3/4 of driveway	2
Gorham/Central Street	Extremely depressing stretch- very ugly to walk- no healing green	4
Highlands	Not enough trees	4

Location	Comment	Score
	Some trees have fallen and knocked out power	4
Inland st., lower highlands	Took all the trees down that lined the sidewalks	4
Kerouac Park	Beautiful willows & cherry blossoms	4
London st. & neighborhood	No trees- no space for them	4
Lowell Cemetery	So many trees, varieties, local and introduced species	1
Lower Belvidere/ the flats	Tress too many where they flood	1
Merrimack River walk	Many trees, well kept	1
Merrimack/ Lower Pawtucket Canal	Little to no trees	4
Middlesex Community College	Cut down recently	4
Mount Vernon Park	Beautiful trees- we need more	3
North Common Reservoir	Needs more trees	3
	There are great trees the city wants to cut down :(1
Riverwalk	So many trees, but not pruned can't see river, feeling of being unsafe- some may also be invasive	3
Sheehy Memorial Park	Many trees	1
South Lowell	Trees have been cut down for development	4




Environment & Conservation

- Vision: Local orgs + ppl who can lead and implement green projects; demonstration projects
- Vision: Not allow construction near the Merrimack
- Vision: SALMON (can make it all the way to Lowell & beyond)

Other Comments

- Knotweed is a major concern – mowing doesn't work, makes it worse.
- Vision: A water fountain
- Vision: More housing so folks aren't living on the banks
- Vision: Rt 113 – potential for riverscape with housing, transit, biking, park
- Vision: Abbot/Clark Cemetery signage – restoration projects (graves knocked over)
- **"We don't have the ocean, we have the Merrimack"**

Images from Lowell Tabling Event Posters

Lawrence

Flooding

- Jackson & Canal Streets – Rainfall flooding <https://maps.app.goo.gl/YDt8yvVC9L4FdR9v7>
- Ambulance parking lot at Methuen St. next to condo complex
- Jackson St by CVS, <https://maps.app.goo.gl/SLKcgmbkctYLHXDA6>
- Logan St, <https://maps.app.goo.gl/onGwPKUor8SYigM9>
- Park street
- Lawrence Street
- Hampshire Street
- Broadway
- Water comes up through ground, clogged storm drains need clearing
- Look into Methuen Dam failure in early 2000's.
- Vision: Less flooding

Flood Hazard from Community Mapping Events

A score of 1 indicated little to no flooding, a score of 4 indicates regular flooding.

	Location	Comment	Score
North Common Neighborhood	Very little		1
	Close to none		1
Arlington Neighborhood	Almost none in 3 years		1
	Have had water damage		4
	Normal amount here		2
	Almost none		1
	Almost none		1
	Regular issue		4
	Almost none		1
	Light flooding		1
	Light flooding		1
	Close to none		1
Jackson St. Methuen	lots of flooding		4
	Close to none		1
	Almost never		1
	Fair amount after snow		3
	Close to none		1
	Close to none		1
	Close to none		1
	Almost none		1
	Almost none		1
	On large hill		1
Mt. Vernon St. Prospect Hill	Close to none		1
	Rt. 114 is too low, localized flooding at culvert.		2
Shawsheen at Rt. 114/Den Rock			
Shawsheen Neighborhood	Almost none		1

Location	Comment	Score
Tower Hill	A bit	2
	Very little	1
	Close to none	1
Water St.	Flooding not usually a problem	1
	Almost none	1
Island St	Almost none	1
	It's been an issue recently	3
South Common Neighborhood		

Recreation

- People want to walk along the river
- People want connectivity between Merrimack cities – bike paths, walking paths
- Used to be able to paddle over to the island towards Dracut
- Vision: Running Trails
- Vision: Duck tour in the Merrimack! (with Spanish-speaking guides)
- Vision: More walking and bike paths! +1 +1 +1
- Vision: Be able to use the river for recreational activity
- Vision: Accessibility +1

Improved or Additional Green Space from Community Mapping

Location	Comment	Grade
Commons	Playground, bikeable	A
	Play area should be bigger, otherwise pretty good	B
	walk there in the summer	A
Den Rock Park	Fantastic for kids - splash pad	A
	Needs forest management and connections to habitat	B
Kane Park	Very good park, lots for kids to do while walking laps	A
Kennedy Park	more safety features and it is a bit small	C
Lorenz Park	Turned into a park	F
Marston Street	Beautiful	A
North Common Park	Very good park, remove the stones playground	A
	Heightened security needed	B
	More trees/seating	B
	Very fun in the summer	A
	Needs repair, stones in playground	F
	Good park	A
	Very lively	A
	Very lively	A
	Very kempt and lots to do	A
	lots for kids to do and lots of families to play with	A
North Common Park	too few parks	
	Needs more for kids	C
	It is in very good shape	A

Location	Comment	Grade
North Common Park	Good for kids to play, adults also have things to do	A
	It's very nice, used to fill it for skating and splash pad	A
	All good	A
	Very relaxing	A
	Good to walk in, heightened police presence	A
	Lots of improvements	A
	Good for walking laps, don't like other parks - unsafe	A
Nunzio Dimarca park	Closed off - kids play, need light + cameras. Safe	B
Riverfront Park	More maintenance (a little) - more greenery, flowers, plants	B
Riverside	Small space - more space for kids and more people will visit	B
Rowell Park	Very good for walking	A
Shawsheen River Corridor	Invasives, habitat restoration, needs connectivity	C
South Common	Very pretty, brighter lights, more safety	A
	Newly remodeled, add parking	B
South Common	More for little kids it's mostly for teenagers	C
	Big, good for walking, good for game playing	A
Storrow Park	Very updated	A
Tower Hill - Gagnon Park	Lots of shade, newly updated, lots of new trees	A
	Newly renovated	A
	Very good park	A

Pollution & Trash

- Address illicit discharges
- Separate sewers
- Replace curb inlets with catch basins – get rid of them b/c they catch too much trash
- Vision: Cleaner
- Vision: Clean drinking water 😊
- Vision: Fewer CSOs +1
- Vision: clean beaches
- Vision: less and safer pest control +1 - BAN all pesticides: kills bees, birds, aquatic life, find out all of the ingredients in lawn sprays, pesticides

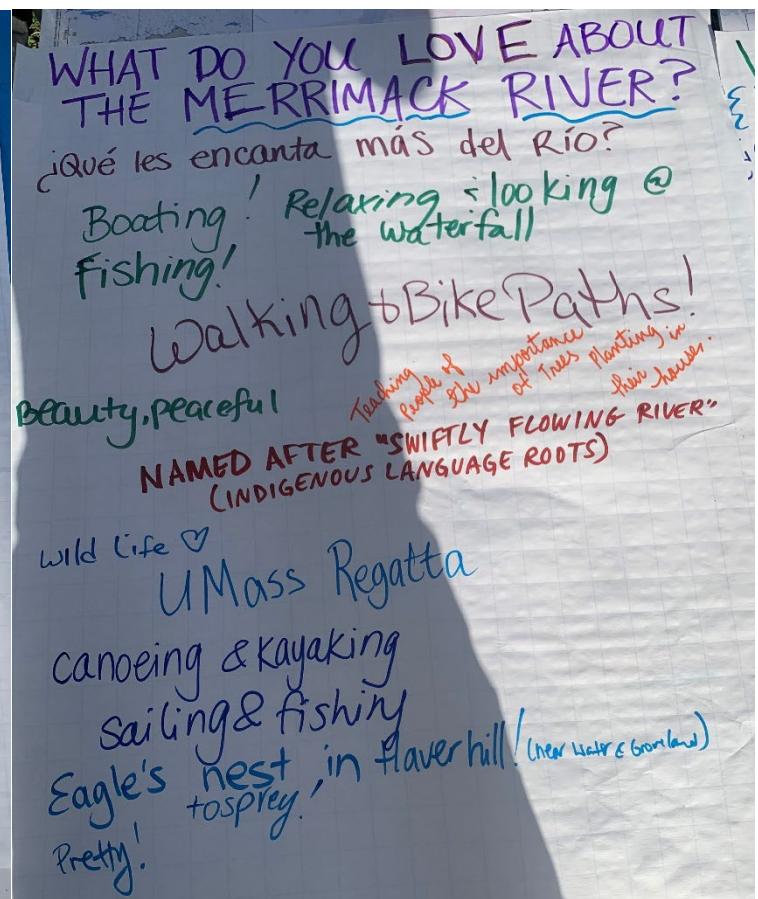
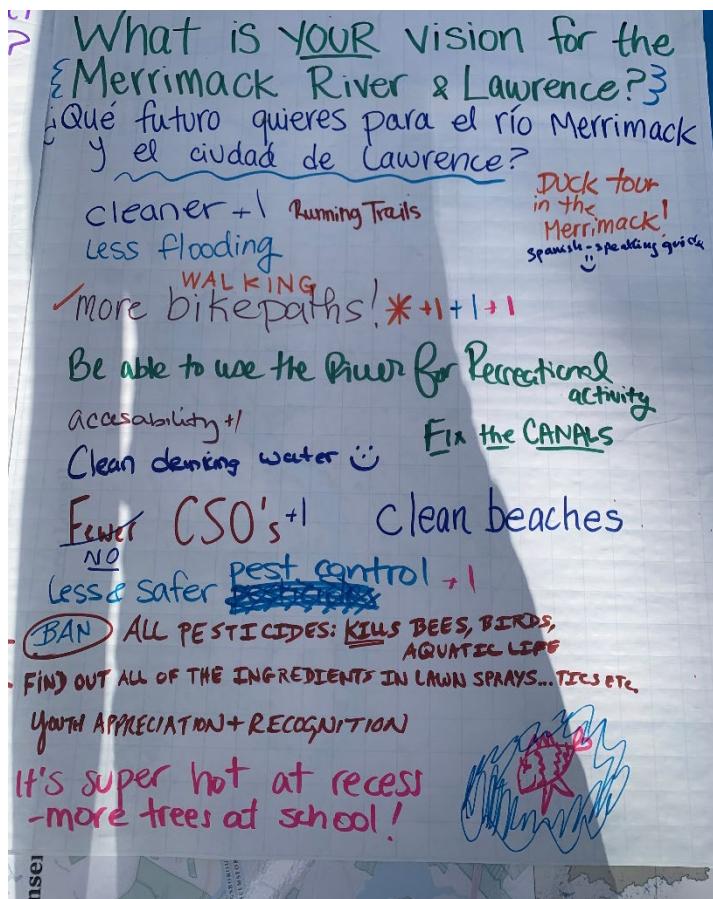
Tree Coverage

A score of 1 indicated good tree coverage, a score of 4 indicates no trees or a need for more trees.

Location	Comment	Score
Arlington Neighborhood - Elm St.	Lots of trees	1
Arlington Neighborhood - Graichen Terr	Good amount of trees	1
Arlington Neighborhood	Lots of trees	1
	Need more trees	4
	Need more trees	4
	Need more	4
	Good amount of trees	1
	Hardly no trees	4
	Needs more trees	2
Arlington Neighborhood - Maple St.	Lots of trees	1
	Need more trees but there are some	3
	Lots of trees	1
Broadway	Many trees	1
Butler	City trees could be better - need love	2.5
Forest & Haverhill St	Not many trees, need more everywhere	3
Island St.	Few trees	4
Methuen	Lots of trees	1
	Lots of trees	1
	Lots of trees of varying health	2
Methuen	Lots of trees	1
Mt Vernon St	Need more trees	4
Newbury St. + East Haverhill	Few trees	4
	only little trees	4
North Common Neighborhood	Need more trees	3
	almost none	4
	Like no trees	4
Prospect Hill	Lots of trees	1
	Trees due to the nearby park, no street trees	2
	Good old trees	1
	Need more trees	3
Prospect Hill	Need more trees	3
Shawsheen Neighborhood	Lots of trees	1
South Common	Need more trees	2
	Need more trees	3
Tower Hill	Lots of trees	1
	Few trees	4
	Lots of trees	1
Water St.	Very few trees	4

Environment & Conservation

- Sub watersheds and tributaries are important – include beaver brook and golden brook in Pellham



Education & Advocacy

- Educate kids about the river to build awareness, connection, care
- Residents organized to protect street trees on Greenfield Street after gas leak. Lost more trees on Osgood and Mass Ave w/o resident organizing.
- Vision: Youth appreciation + recognition

Other comments & concerns

- Vision: Fix the canals
- Vision: It's super hot at recess – more trees at school!

Images from Lawrence Tabling

Manchester

All data is from community mapping events.

Flood Hazard

A score of 1 indicated little to no flooding, a score of 4 indicates regular flooding.

Location	Comment	Score
CSO 1-3	Sewage	4
Between Concord St and Beech St, (Central HC)	This place needs more tents especially when it rains	4
Granite St. near the bridge	Bad condition	3
Cohas Brook	Unknown frequency	4
Veterans Park	Storm drains overflow	2
Spruce st. back extension (alley) near Wilson St.	Clogs and backs up during it	2
Valley Cemetery	CSO flooding	4
Lincoln St.	Lots of broken asphalt. lots of flooding	4

Tree Coverage

A score of 1 indicated good tree coverage, a score of 4 indicates no trees or a need for more trees.

Location	Comment	Score
Elm St. / US 3	Gets hot	4
Maple street from Sagamore North to Webster	Still a tree- lined street	4
Spruce st. lining sidewalk	But trees explode sidewalk	3
Hanover St between Union and Elm	provides shade and lights	1
Near Elm St. and Chestnut Streets	Not many trees downtown between Elm and Chestnut	4
Belmont and Bridge St.	Lack of tree maintenance	4

Improved or Additional Green Space

Location	Comment	Grade
Arms Park	Nice but implement the master plan! Rare park that has places to sit and have a picnic	C A
Bass Island Park	Trash and encampments	D
Blodget Park	Access issues	D
Crystal Lake	Bacteria issue	D
Derryfield	Need grills and more picnic tables	B
Harriman Park	Needs regular attention to landscaping	C
Simpson Park	Can find needles there	B
Livingston Park	This place needs a tent Needs more/better lighting at night.	C D
Merrimack River	The river needs more at River Road	D
Oat Park	Passive park, flooding	B
Pine Island Park	Needs trail work	C
Precourt Park	Sometimes Homeless issue	B
Rock Rimmon	Needs more open space. D for trails and rock. with trash	C
St. Anthony Park	Nothing there- not maintained well	D
Stark Park	Homeless problem and theft	A
Stevens Pond	Invasives	D
Valley Street cemetery	Not as usable as it should be Sewer issues, poor lighting	D C
West Side Ballpark (Play ball Fields)	Mentioned twice-Cons- no picnic area.	D

Nashua

All data is from community mapping events.

Flood Hazard

A score of 1 indicated little to no flooding, a score of 4 indicates regular flooding.

Location	Comment	Score
Dickerman St.	on to the slope of the road and high water table the ground becomes saturated and water floods building. Sidewalks could help divert water into street drains.	2
E. Dunstable and Clydesdale	In extreme rain	1
Major drive backyard next to the community center	Every time it rains, it floods. When it snows, you can ice skate!	4
Raven St	Not many invasives- invasives	
Shaw's Shopping	No trees in lots anymore	4
Tilton St	Flooding in backyard from Nashua River	3

Tree Coverage

A score of 1 indicated good tree coverage, a score of 4 indicates no trees or a need for more trees.

Location	Comment	Score
Mines Falls Park	There are many trees for wildlife to flourish	1
Greeley Park	Varied	3
Streets around New Searles Elem	2 or 3	3
Conant Rd Area	2 or 3	3

Improved or Additional Green Space

Location	Comment	Grade
Downtown Riverfront	Few benches	B
Edgewood Cemetery	It is an av above liun; Never are harvest wildcats livining in it.*	A
Evergreen Cemetery	Needs Norway maples replaced with native trees.	
Fairgrounds Park	Trash thrown everywhere	D
Fields Grove Park	USA largest snapping turtle , osprey, heron, many turtle and frog species, many birds and insects. Large 5ft water snakes. It's secret, largest Nolis captivity. *	
Greely Park	nice and cool in the summer	A+
Greely Park	Less shade for gardening	B
	Picnics and Community Activities	B
Le Parc de Notre Renaissance Francias	Shrubs and trees but has coverage*	
Ledge Street Garden	no people in the park	B
Lincoln Park	No space for the kids to pay	C
	Very few trees	C
Mine Falls Park	Diverse monts and animals; accessible	A
	Not secure and dirty	F
	Bikes, walking, good trails	A
	Lots of trees and wild life	A and B
	bathroom is an issue. we need a bigger space	C
Orchard Ave Water Tower	Fox habitat and raptors and coyotes	A
Roby Park	short trails	B
Rotary Commons Park	No trees pdiage(*unclear) - depressing	F
Soutrem	Wetlands but housing flooding; river aggressively expanding	
Sullivan Park	No trees	D
Wood lawn Cemetery	It is an av above atum*	A
Yudicky/ Lovewell's Pond Area	Good trials, trees, calve	B

Appendix 3b Municipal and Organizational Partner Conversations

Focal City	Date of Meeting	Organization/ Agency in attendance	Major Themes
Lowell	August 2023	Lowell Parks and Conservation Trust	Member of the Merrimack Plan Advisory Committee, are aware of this project and have expressed interest in being involved.
Nashua	August 2023	City of Nashua Community Development Division City of Nashua Sustainability Department City of Nashua Public Health Department	Merrimack River is a drinking water source for the city – may be increasingly critical if PFAS levels elevate over time and/or if drought becomes severe; there is an unhoused population that uses park along river for encampment Emerging Themes: Drinking water, Access/recreation, flooding, conservation connection public health and wellbeing
Manchester	September 2023	City of Manchester Planning and Community Development Division City of Manchester Parks Department City of Manchester Environmental Protection Division Environmental Justice Committee for Manchester NAACP	Discussed several explicit areas that should be amplified by this planning update including condition of and public access to green spaces such as parks and islands in the Merrimack River, stormwater and flooding, and wetlands protection. Emerging Themes: Recreation, stormwater & flooding, urban ponds, wetlands, dams, and street trees are themes that emerged in our discussion
Manchester	September 2023	Manchester Conservation Commission Meeting	Presented project to commission Flagged: Commission is interested in providing feedback for draft plan
Manchester & Nashua	September 2023	NH Department of Environmental Services NH Department of Health and Human Services Clean Energy NH	Shared project with group Discussed our community engagement approach.

			<p>Possible Opportunity: pairing of vetting draft maps with DES climate outreach through NH Listens</p> <p>Emerging theme: Partners are seeking to do similar community centered engagement and partners are using CJEST data to inform work (Social Justice data)</p>
Nashua	Oct. 2023	Nashua Community College	<p>Desire to collaborate, but mismatch in timelines.</p> <p>Nashua and Manchester Community Colleges flagged as potential sites for community event to provide</p>
MA	Oct. 2023	Appalachian Mountain Club	Follow-up later after their data comes out.
MA	Oct. 2023	Mass Municipal Vulnerability Program (MVP)	<p>Lowell is more active in MVP than Lawrence, both need more support on environmental issues.</p> <p>MVP coordinators are very well connected with municipal governments and some CBOs in their regions.</p>
MA	Oct. 2023	Mass Audubon	<p>Project team held meetings held through fall 2023. Meetings scheduled to discuss spatial analysis Jan 2024</p> <p>Local rep from MA Audubon is now a part of the Partnership Advisory Committee</p>
Manchester	December 2023	<p>Southern NH Regional Planning Commission</p> <p>NH Office of Recreation Industry Development</p>	<p>Invited to the RPC Directors Meeting to present project.</p> <p>Emerging Themes: Climate Resilience</p>

Manchester & Nashua	January 2024	NH State Regional Planning Commission Directors Meeting	<p>Connections with other regional Planning commissions made during this meeting.</p> <p>SNH Regional Planning Commission and Nashua Regional Planning Commission directors showed interest and recognize the alignment in priorities.</p> <p>Including connecting with an RPC in MA (Merrimack Valley PC)</p>
Lawrence	January 2024	Groundwork Lawrence	Continuous engagement – working as a community advisor kickoff meeting
Lowell	January 2024	MassDevelopment – Transformative Development Initiative	Presented on project.
Nashua	Feb. 2024	Nashua Regional Planning Commission	<p>Possible Community Engagement: Arlington Street Community Center, Public Library and Nashua Senior Center</p> <p>Emerging themes: Need for Street trees in lower income census tracts; group of low-income neighborhoods that have no green space access and no river access; flood storage capacity</p>
NH	Feb. 2024	Conservation Law Foundation	<p>Possible to piggy-back outreach events in Nashua</p> <p>Follow up with Manchester and Nashua CLF teams about looking for community advisor consultants (1-2) in Nashua and Manchester for this project -any recommendations for the role</p>
NH	April 2024	State of New Hampshire- Department of Business and Economic Affairs:	Housing, zoning, tension between housing and conservation, best way to use state zoning data to help with conservation planning

		Office of Planning and Development	
Lowell, MA	May 2024	Doors Open Lowell Community Event- Tabling	Used maps and Survey 123 Map to survey Lowell community members on community conservation priorities including heat islands, flooding, & green space access Emerging themes: lots of great conversations about historic flooding and the desire for extended river walk green spaces
Lowell, MA / Northern Middlesex County	June 2024	Northern Middlesex County Council of Governments	Introduced each other and the work, discussed potential opportunities to collaborate towards shared goals between NMCOG and the Merrimack Project, especially focused on outreach in Lowell and overlaps with the Chelmsford Open Space Plan.
Lowell, Lawrence	June 2024	NEIWPCC	Discussed potential collaboration with the NEIWPCC to bring youth & the environment program participants into the Merrimack project during Summer 2024.
Nashua, NH	June 2024	Granite State Organizing – Nashua Chapter	Introduced each other and our work; prepped for presenting at next monthly chapter meeting who attends Nashua chapter meetings, discussed themes that chapter members are interested in (flooding, green space access along the Merrimack and drinking water quality); presentation will be specific to Nashua; discussed potential community advisor roles of chapter members; potential connection Manchester chapter?
NH	June 2024	Climate, Health, Participatory GIS and Mapping meeting University of NH Plymouth State University NH Healthy Climate	Emerging themes: Participatory GIS, Youth voices, storytelling component to the Merrimack Planning Project, Health Care Worker voice and connections Next Steps- Anna will share project 1 pager and possibly conduct a presentation to the Health Care Worker for Climate Coalition could provide a voice in the plan and connections to other community voices

Lowell, NH	June 2024	Acre Festival and Resource Fair Tabling	Will use large physical maps and Survey 123 to record Lowell community members conservation priorities including heat islands, flooding, & green space access Emerging themes: Heat Islands, Flood Hazards
Nashua, NH	June 2024	GSOP (Granite State organizing) Nashua chapter meeting	Presentation orienting chapter to project, and discussion about heat and flooding in Nashua. Received input on potential Nashua events to attend.
MA	June 2024	MA DER Partnerships Meeting	Lots of opportunities to interact with the DER partnerships program in reviewing and implementing the maps.
Lowell	June 2024	Mill City Grows Meeting	
Lowell area	June 2024	NMCOG Meeting	
Manchester, NH	July 2024	Manchester Grows USDA-NRCS Community planting event and informal discussion	Ally went to participate in a community garden cleanup on the west side and to talk about connecting with Manchester Grows as community partners. Scheduled follow up for early Aug. Also met the NRCS staff who were supporting their community garden build
Manchester and Nashua, NH	July 2024	Granite State Organizing Project	Meeting to plan and draft out SOW for Nashua and Manchester Community Advisors
Manchester and Nashua, NH	July 2024	Positive Street Art Unchartered Tutoring	Had a preliminary meeting with a previous partner in a different project. They aren't sure about collaborations with us at this time, some trust still needs to be built. The group connected us to additional contacts within Manchester City Government.
Manchester, NH	July 2024	Manchester Community Action Coalition	Had a preliminary conversation about possibly working with MCAC to present our plan to their constituency. Their focus right now is on civic engagement, early childhood education, and providing programming to their members, driven by their members, so this project may be out of scope with their interests, but they would reach back out.
Nashua, NH	July 2024	Regenerative Roots	Met with Regenerative Roots, a non-profit in Nashua dedicated to addressing food insecurity and providing city greenspaces.

			Right now, the team is super busy and can't contribute to data collection, but would like to learn about the final plan when complete.
Manchester, NH	August 2024	Presentation at GSOP Manchester chapter, with interactive maps.	TNC brought the large maps of Manchester priorities to GSOP's Manchester chapter meeting, lots of great engagement.
Lowell, MA	August 2024	Lowell Litter Krewe Lowell Conservation Council Chair	Meeting to discuss project.
Manchester, NH	August 2024	Manchester Multicultural Festival	Tabled at a local community street fair. Had large interactive maps and the watershed model on hand, received good engagement. Met Manchester Mayor Jay Ruais who expressed support for the project.
Lowell and Lawrence, MA	August 2024	Merrimack Valley Project	Met with the new ED for the Merrimack Valley Project- sister org to Granite State Organizing Project.
Lawrence	Sept. 2024	Tabling at Lawrence Bread & Roses Heritage Festival	Major themes – people want more access to the river for recreation and want it cleaner.
Nashua	Sept. 2024	Tabling at Nashua Multicultural Festival	Tabled at a local community street fair. Had large interactive maps and the watershed model on hand, lots of great community engagement
Nashua	Oct. 2024	Update presentation for Nashua Conservation Commission	
Manchester	Oct. 2024	Manchester Urban Ponds Restoration project	Met with representative from the volunteer-based organization dedicated to protecting and advocating for urban ponds and wetlands in Manchester. They shared a ton of resources on urban ponds in Manchester and is interested in remaining in touch about the project.

APPENDIX 3C

Merrimack River Watershed Conservation Plan Community Mapping Workshop

NOTE: This workshop was developed by Allyson Snell, Community Partnerships Manager for The Nature Conservancy in NH in 2024 and is available for open use. Please provide attribution if used.

Total Time Required	90 minutes, plus extra time for any additional presentation work
Minimum Participant Size	8-12 individuals in small groups
Maximum Participant Size	70-80 individuals in groups no larger than 10 people
Other Details	This workshop was designed to be conducted with paper maps and little reliance on technology. Always be sure to understand the needs of your audience in terms of accessibility needs, language translation, childcare, and timing. We recommend conducting these sessions on a weekday evening and providing a meal to make it easier for a wider community group to participate.

WORKSHOP MATERIALS TO PRINT:

- Enough copies of the Facilitator's guide (pages 3-5) for the team conducting the workshop
- Large format (24" x 36" is a good size) paper maps of the city/neighborhood/community where you are collecting data. Print one per group.
- Enough copies of the Community Mapping Worksheet (pages 6-8) – at least one set per group. In some cases, you may want to give a worksheet to every participant if the group is small.
- A simplified agenda for participants- at least one printed per group.

OTHER MATERIALS TO BRING:

- Colored dots or flags (red, green, and yellow- corresponding to each theme)
 - Red= Tree coverage/ areas of high heat
 - Yellow- flooding
 - Green= green spaces/ parks/ gardens/ forests
- Pens/Pencils
- Index cards for notes at each table

- Flip Chart papers for additional notes
- Markers
- A paper or computer for collecting sign-in information
- Any handouts explaining the project or your organization/ agency that people would want to learn about and have background information on.

Handout 1: Facilitators Guide and Annotated Agenda (to be used by the facilitator only)

This guide outlines how to conduct a community climate resilience focused mapping exercise which allows area residents to inform conservation planning efforts through their experiences with flooding, high heat/lack of tree coverage, and the condition and availability of green spaces. Community members will be asked to highlight areas on a map using a color code dot system followed by worksheets that residents fill out more details on each dot, along with a ranking and rating of condition or severity of the theme. Both the prevalence of dots and the qualitative data gleaned from community members can help tell a story about what climate impacts residents are experiencing in their communities.

In this guide, we assume that the facilitators will be hosting a community mapping workshop in the evening, between the hours of 6-7:30pm. While this workshop can accommodate small or larger groups, we do not recommend having individuals do the exercise alone. Part of the process is the collaboration between neighbors and community members discussing with each other what they have experienced.

Facilitators' Agenda

5:00pm- Arrive and set up for the workshop

- Make sure to set up a registration table, and place maps, dots, worksheets, index cards, and pens/pencils at each table. Each table will be a group and try to keep each group size to under 10 people.

6:00pm- Workshop Starts

- Allow people time to arrive, register, grab food, and settle in.

Opening Remarks:

- Welcome and thank partners
- Read the free and prior consent form.
- Quick overview of the project and point to FAQ docs.

6:15-6:30pm- Icebreaker:

- Ensure you have enough blank index cards for everyone at each table.
- Ask people to write down how they define their community (in whatever context they choose) on an index card provided.
- After 3-5 minutes, ask each table to discuss their answers amongst each other.
- Ask a few volunteers to share their answers and reflections from their conversations to the larger group.
- Why do we do this? To understand that community is defined in so many ways.

6:30pm-7:20pm-Community Mapping Exercise

Part 1- mapping (6:30pm-6:55pm)

- Ensure participants are seated in groups of no more than 10.
- Each table/ group should have flip chart paper, index cards, pens, and one large map of the city/ town that they can start adding stickers to.
- You are asking residents to identify the following topics on the large maps provided:
 - The quality/ use of green spaces
 - Where they experience flooding
 - Where they see trees/ tree coverage or experience areas of high heat. (Note- while we are concerned with understanding areas of high heat, in this exercise we use tree coverage as a proxy because it is easier for residents to visual where there is and aren't any trees).
- Have participants put stickies on the map using the color code guide below. For each sticky dot have them label each dot numerically, starting new with each color. For example, all green dots should be numbered 1,2, 3 and so on, and start again with blue and red dots.

Part 2- Rating and Ranking (6:55-7:10pm)

- After participants have placed their sticky dots on the maps and numbered them, have them list each dot in the appropriate column (keeping the numbers in the first column) of the worksheet. The worksheet has three tables, one for each theme (green spaces, flooding, and high heat/ tree coverage) in the corresponding color. The worksheets provide a sample of how the data should be recorded in the first line. Residents are encouraged to provide as much detail as possible, and in the columns on the right side, provide their ranking and commentary.
- A few tips for using the worksheets:
 - Offer different language versions depending on your audience.
 - If your groups aren't large or you don't have many datapoints, you can use one worksheet per group. It all depends on how much your participants have to offer.
 - Some people may not want to crowd around the maps and/or work in groups, and in that case, they can just fill out the worksheet and refer to the larger printed map.
 - This can also be done simultaneously while folks are putting dots on a map, depending on timing.

Color Codes:

- Green is green space
 - Rate the condition of green spaces on a scale of A-F (with A being excellent, F being poor)

- Yellow is flooding
 - Rate on a scale of 1-4 (1 is occasional, 4 is chronic and a problem)
- Red are trees
 - Rate on a scale of 1-4 (1 signifies few to no tree coverage, 4 is substantial tree coverage)
- If participants are having a hard time thinking about where to start- below are some sample questions to ask/consider as prompts:
 - Is there a resource that is important to your community/neighborhood/however you identify community?
 - What improvements or additions do you wish you could see with your parks and green spaces?
 - What types of green spaces would you most like to see (ex. Natural areas, playgrounds & sports fields, access to water bodies, pollinator or other wildlife habitat, walkways & bike paths, urban food gardens, etc.)?
 - What would help your community be more resilient to the changes in extreme weather that have been happening in recent years which include bigger rainstorms and more heat waves?
 - Where do you go to see or experience nature in your community?

Once participants have had enough time to provide the sticky dots and fill out their worksheets, be sure to collect each map and worksheet in a group. Post- workshop you can manually enter in the data to whatever program you are using to collect and synthesize the information. We recommend stapling or sticking the worksheets to their corresponding maps, or labeling the maps and worksheets with the same number at the top to keep them all together.

7:20-7:30pm- Next Steps and wrap up

- If time, have group share their top 3 findings/highlights of the discussion.
- Facilitators then gather all the data and share detailed next steps for how it will be used and incorporated.

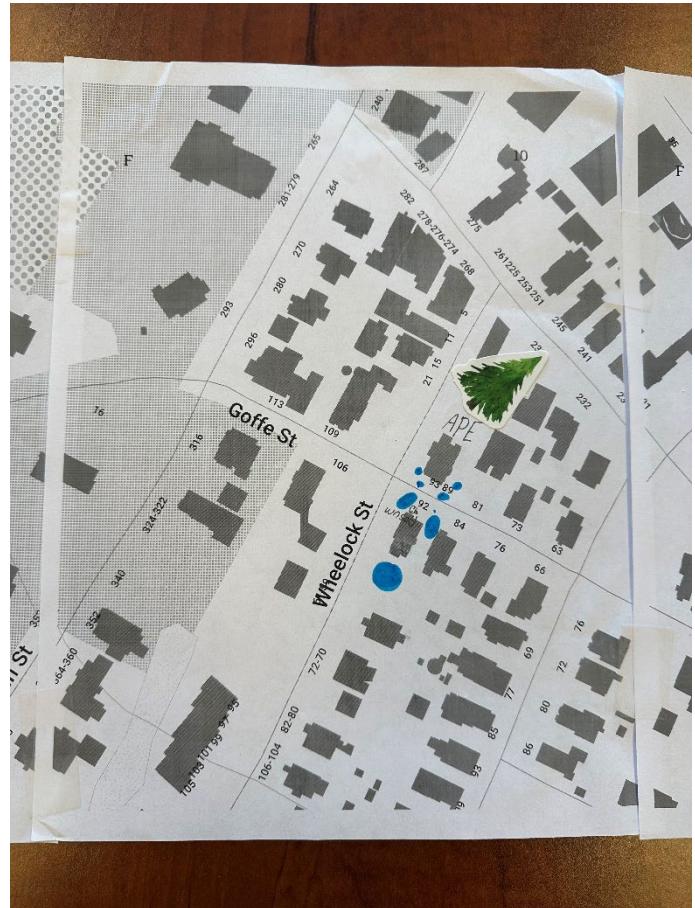
7:30pm Conclusion

8:00pm Final cleanup and depart

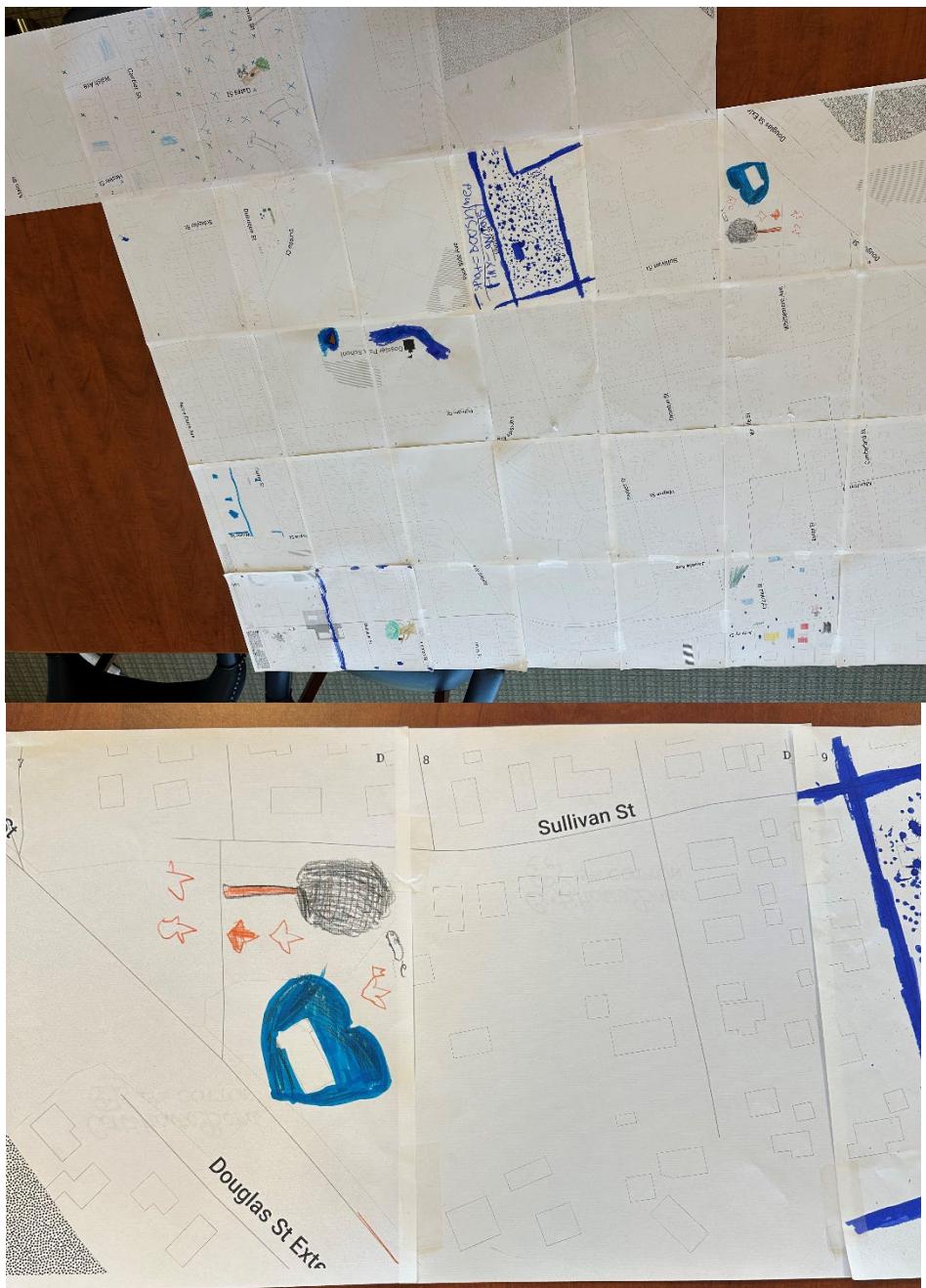
Community Mapping Worksheet

Once you have added a sticker to the map, please number it and tell us more about the location using the tables below.

Map #	Green Spaces and Nature (Parks, Riverfront, Gardens, Wildlife Habitat, Nature Trails, etc.) Grade on a scale of A, B, C, D, or F, where A is excellent and F is failing.		
Name	Address or intersection	How would you grade it?	
1	Example Park	Corner of maple and vine st.	B- the park is generally well maintained.



Tree Coverage: Rate on a scale of 1- 4, where 1 = lots of trees and 4 = few or no trees


Map #	Name of place	Address or Intersection	Rate on a scale of 1-4
1	Example neighborhood	123 Merrimack Street	4 - there are no trees here

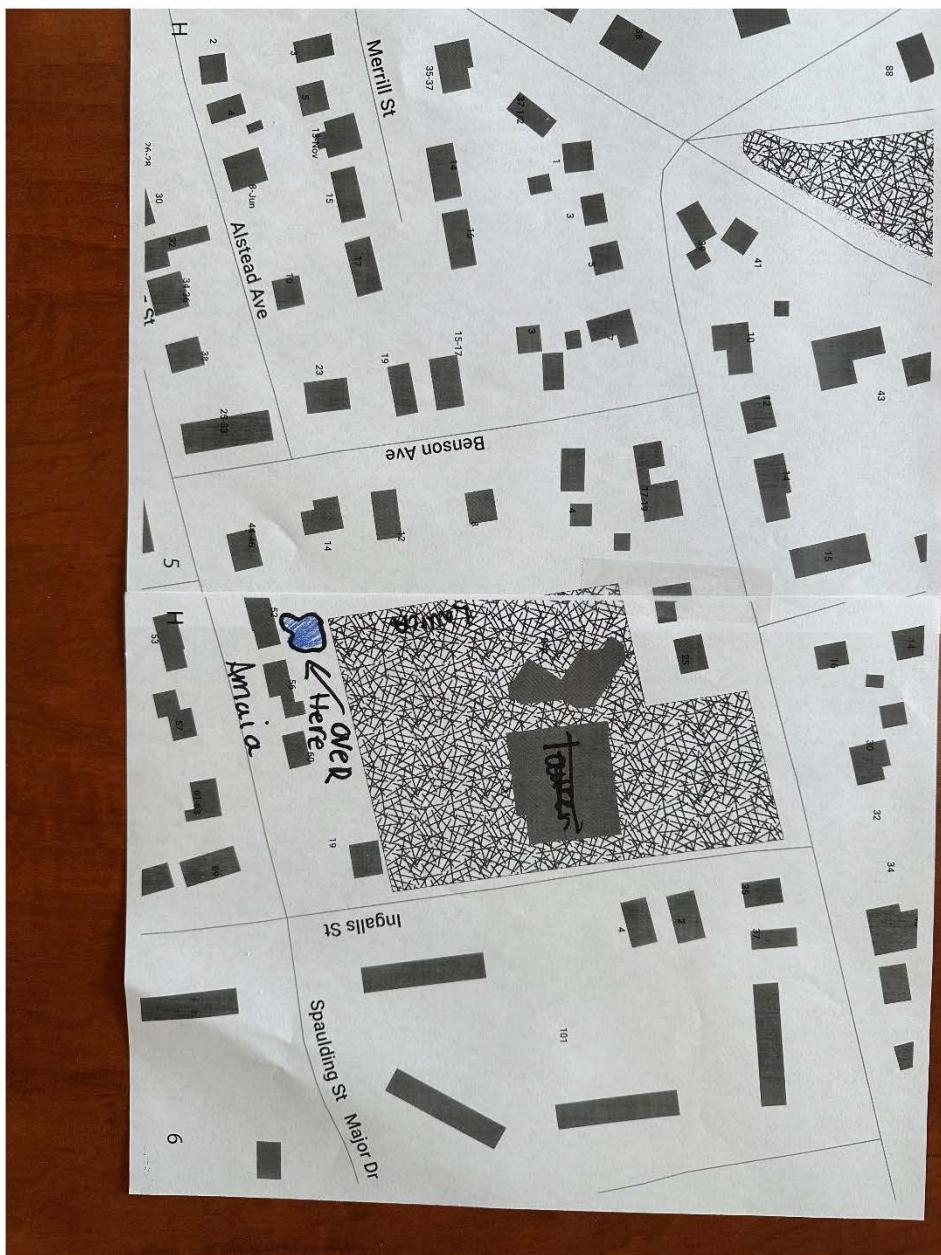
Manchester Neighborhood Maps

Created by 3rd-5th Grade Students at Parker Varney, Bakersville, and Gossler Park Elementary Schools

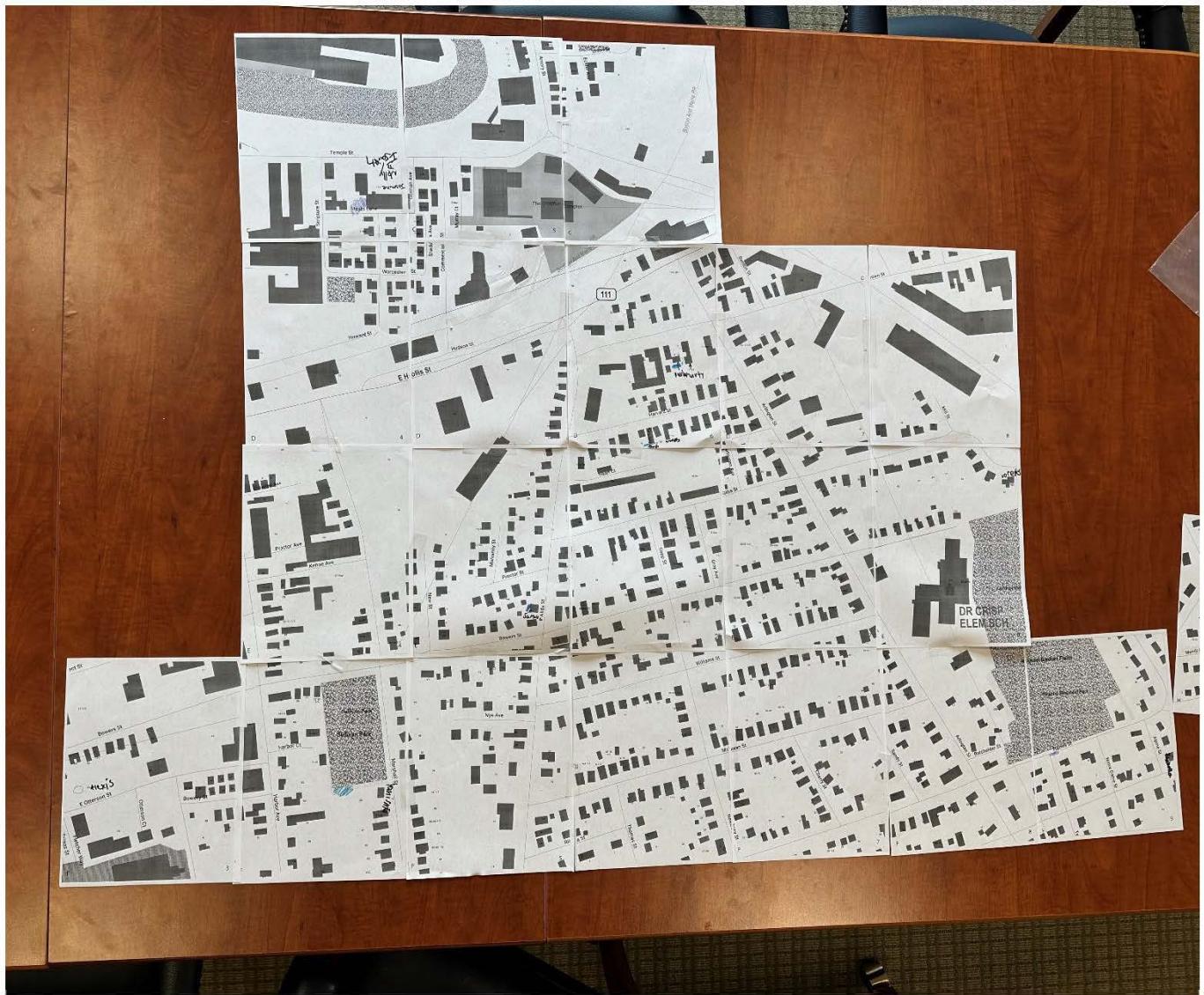
Manchester Neighborhood Maps

Manchester Neighborhood Maps

Manchester Neighborhood Maps



Nashua Neighborhood Maps


Created by students from Dr. Crisp Elementary School

Nashua Neighborhood Maps

Nashua Neighborhood Maps

Appendix 4

Spatial Methodology

Community Climate Resilience	2
Wildlife Habitat and Connectivity	4
Working Lands	8
Priority Agricultural Resources	8
Prime Forestry Lands	9
Water Resources	11
Pollutant Attenuation and Removal	11
Public Water Supply Areas	12
Renaturing	14

Community Climate Resilience

To inform the 2025 Merrimack Watershed Conservation Plan, a GIS-based analysis was conducted to identify areas where conservation actions can strengthen community climate resilience. This analysis integrates multiple spatial datasets to highlight locations that reduce climate-related risks, strengthen community resilience and enhance overall well-being. The goal was to prioritize areas that provide **flood storage, heat island relief, green space opportunities** and protection of critical **community assets**, while incorporating **community input**.

The analysis combined five major components: census areas to identify areas impacted by flooding, extreme heat and limited green space; heat island severity to highlight areas most affected by extreme heat; community assets such as dams and culverts that influence flood risk; flood storage and risk mitigation features including wetlands, riparian buffers, FEMA and Fathom flood zones and sea-level rise projections; and green space opportunities based on open canopy areas, impervious surfaces and priority areas for new parks (see below for full list of data sources). Community input from the four focal communities¹ was incorporated to capture local observations of flooding, limited tree cover and green space needs.

Each dataset was processed, standardized and converted to a 5-meter raster grid, with values rescaled to a 0–1 range for comparability. Then layers were combined using a co-occurrence analysis, summing scores for flood mitigation, heat relief, green space potential and community assets. Community input was weighted and incorporated to ensure local priorities were represented. Census areas were applied as multipliers to emphasize areas that are impacted by flooding, extreme heat and the need for improved green space. The final composite score was classified into tiers: **Tier 1 represents the top 20% of scores and the highest priority for resilience investment; Tier 2 includes the next 20% as moderate priority and remaining areas were not prioritized.**

The resulting Community Climate Resilience layer identifies locations where conservation and climate adaptation strategies will have the greatest impact. These areas represent opportunities for conservation practitioners to protect natural systems that buffer floods and heat and for municipal decision makers to guide land-use planning, infrastructure upgrades and community greening initiatives.

¹For this planning effort, the project team engaged deeply with residents in four focal cities along the Merrimack River mainstem: Manchester and Nashua, NH, and Lowell and Lawrence, MA.

Data Inputs

The analysis combined five major components:

- **Flood Storage & Risk Mitigation:** Mapped areas acting like storage areas in terms of being a wetland or riparian area with a slope less than or equal to four percent², FEMA³ and FATHOM flood zones⁴ and sea-level rise projections⁵.
- **Census Blocks⁶:** Highlighted census block areas that are impacted by flooding, heat severity and/or limited green space.
- **Heat Island Severity⁷:** Highlighted areas most affected by extreme heat.
- **Community Assets:** Included dams⁸⁹ and culverts¹⁰ that influence flood risk.

²NH GRANIT. "LiDAR-Derived Percent Slope (New Hampshire)." Raster GIS data. University of New Hampshire, n.d. Accessed January 2025. <https://nhgeodata.unh.edu/datasets/NHGRANIT::lidar-derived-percent-slope-nh/explore>.

³ Federal Emergency Management Agency. "National Flood Hazard Layer (NFHL) Dataset." GIS shapefiles and web services. FEMA, n.d. Accessed January 2025. <https://www.fema.gov/flood-maps/national-flood-hazard-layer>.

⁴ Fathom Global. "100 Year (1% AEP) Flood Hazard Zones: Pluvial and Fluvial Flood Extents." GIS data. Fathom Global, 2024. Accessed January 2025. <https://www.fathom.global/product/global-flood-map/>.

⁵ Massachusetts Coastal Flood Risk Model (MACFRM). "Modeled Coastal Flood Zones with 2050 Sea Level Rise and 100-Year Storm (0.1% AEP)." GIS data. Massachusetts Office of Coastal Zone Management, n.d. Accessed January 2025. <https://www.mass.gov/info-details/massachusetts-coastal-flood-risk-model>.

⁶ U.S. Census Bureau. "TIGER/Line Shapefiles, 2025." GIS shapefiles. U.S. Department of Commerce, n.d. Accessed January 2025. <https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html>.

⁷ Trust for Public Land. "Heat Severity 2023–USA." ArcGIS Online raster data. Trust for Public Land. Accessed January 2025. <https://tpl.maps.arcgis.com/home/item.html?id=55f3c64e35e04d39b0128dbaba9511c4>.

⁸ New Hampshire Department of Environmental Services, Dam Safety Engineer. "NH Dam Inventory." Vector digital data. NH GRANIT, March 24, 2022. Accessed January 2025. <https://www.nhgeodata.unh.edu/datasets/NHGRANIT::nh-dam-inventory/explore>.

⁹ Bureau of Geographic Information (MassGIS), Commonwealth of Massachusetts, Executive Office of Technology and Security Services. "Dams." Feature service. MassGIS Data Hub, March 12, 2024. Accessed January 2025. <https://gis.data.mass.gov/datasets/massgis::dams/about>.

¹⁰ North Atlantic Aquatic Connectivity Collaborative. "Road–Stream Crossing Dataset: Massachusetts and New Hampshire." GIS data. NAACC, n.d. Accessed January 2025. https://naacc.org/naacc_search_crossing.cfm?sp=1.

- **Green space Opportunities:** Located open canopy areas¹¹, impervious surfaces¹² and priority zones for new parks¹³.
- **Community Input¹⁴:** Incorporated local observations of flooding, lack of tree cover and green space needs.

Wildlife Habitat and Connectivity

To guide conservation planning and municipal decision-making, a GIS-based analysis was conducted to identify and prioritize **areas that support wildlife habitat and connectivity** within the Merrimack Conservation Partnership (MCP) Service Area. This analysis integrates multiple habitat and connectivity datasets from New Hampshire and Massachusetts to create a composite score that reflects ecological importance across the landscape.

The approach used a **weighted overlay analysis**, combining data on wildlife corridors, habitat tiers, regional connectivity and specialized habitat features. Each dataset was assigned a weight based on its relative importance to wildlife movement and habitat quality (see Table 1). For example, primary wildlife corridors in New Hampshire received the highest weight (5), while secondary corridors and regional connectivity layers received moderate weights (3). Habitat tiers from the New Hampshire Wildlife Action Plan (WAP) and Massachusetts BioMap Core Habitat were also heavily weighted (4), reflecting their critical role in biodiversity conservation. Additional layers included BioMap local aquatic habitats, wetlands, vernal pools, rare species occurrences and salt marsh migration areas, as well as river corridors and landscape connectivity indices from CAPS (Conservation Assessment and Prioritization System).

¹¹ National Oceanic and Atmospheric Administration, Office for Coastal Management. "Coastal Change Analysis Program (C-CAP) High-Resolution Land Cover (Canopy Layer)." Raster dataset. NOAA Digital Coast, n.d. Accessed January 2025. <https://coast.noaa.gov/digitalcoast/data/ccaphighres.html>.

¹² National Oceanic and Atmospheric Administration, Office for Coastal Management. "Coastal Change Analysis Program (C-CAP) High-Resolution Land Cover (Impervious Surfaces)." Raster dataset. NOAA Digital Coast, n.d. Accessed January 2025. <https://coast.noaa.gov/digitalcoast/data/ccaphighres.html>.

¹³ Trust for Public Land. "ParkServe." GIS data, Land and People Lab, 2025. ArcGIS Hub, [Trust for Public Land's ParkServe | ArcGIS Hub](https://www.arcgis.com/home/item.html?id=50b2497a9eb54b68b9d022772c427a96). Accessed January 2025.

¹⁴ Anna Ormiston; The Nature Conservancy. "Merrimack River Watershed Conservation Plan: Community Input Data." GIS data. ArcGIS Online, 2025. Accessed January 2025. <https://www.arcgis.com/home/item.html?id=50b2497a9eb54b68b9d022772c427a96>.

After applying the weighting scheme, composite scores were calculated for each area and applied thresholds to identify priority zones. **Urban areas** were considered significant if **they scored ≥ 2 and covered at least 10 acres**, while **rural areas required a score of ≥ 5 and a minimum size of 500 acres**. These thresholds ensure that selected areas represent meaningful opportunities for habitat protection and connectivity enhancement.

The resulting dataset highlights high-value habitat cores and corridors that are essential for maintaining ecological integrity and facilitating species movement under current and future conditions, including climate-driven changes such as sea-level rise. This analysis provides a transparent, data-driven foundation for conservation practitioners to target land protection and restoration efforts and for municipal decision makers to incorporate wildlife connectivity into land-use planning and development policies.

Table 1: Wildlife Habitat and Connectivity input datasets, weights and spatial extents (table continues onto next page).

Input Data set	Description/Category	Weight	Spatial Extent
NH Wildlife Corridors¹⁵	Primary Corridors	5	NH and some MA
	Secondary Corridors	3	NH and some of MA
NH Wildlife Action Plan – Highest Ranked Wildlife Habitat¹⁶	Tier 1	4	NH
	Tier 2	3	NH
	Tier 3	2	NH
BioMap: The Future of Conservation¹⁷	Regional Connectivity	3	MA and some of NH
	Core Habitat	4	MA
	Critical Landscape	3	MA
	Local Aquatic Habitats	4	Urban - MA
	Local Aquatic Habitat Buffers	4	Urban - MA
	Local Wetlands	4	Urban - MA
	Local Wetland Buffers	4	Urban - MA
	Local Landscapes	4	Urban - MA
	Local Vernal Pools	4	Urban - MA
	Local Rare Species	4	Urban - MA
Critical Linkages and the Conservation Assessment and Prioritization System (CAPS) Model¹⁸	MA CAPS – IEI – use >=50%	3	MA
	NH CAPS use >=50%	3	NH
The Resilient and Connected Network¹⁹	RCN (regionally enhanced)	1	MA & NH
	NH: initial condition & migration potential: 2050 at 5 meters	4	MA & NH

¹⁵ New Hampshire Fish and Game Department. "NH Wildlife Corridors." GIS data. ArcGIS Online, n.d. Accessed August 2024. <https://nhfg.maps.arcgis.com/home/item.html?id=3215a291a4db409c8a0fc2436fc3b8b2>.

¹⁶ New Hampshire Fish and Game Department. "NH Wildlife Action Plan 2020 – Highest Ranked Wildlife Habitat." GIS data. ArcGIS Hub, n.d. Accessed August 2024. https://new-hampshire-geodata-portal-1-nhgranalit.hub.arcgis.com/datasets/c8466f8ccc994defbd3855cbd035300f_2/explore.

¹⁷ Commonwealth of Massachusetts, Bureau of Geographic Information (MassGIS). BioMap: The Future of Conservation. GIS data. MassGIS Data Hub (Executive Office of Technology Services and Security), November 15, 2022. Accessed August 2024. <https://www.mass.gov/info-details/massgis-data-biomap-the-future-of-conservation>

¹⁸ University of Massachusetts Amherst, Department of Environmental Conservation. "Critical Linkages and CAPS Model Data – Massachusetts and New Hampshire." GIS data. CAPS Project, n.d. Accessed August 2024. https://umasscaps.org/data_maps/index.html.

¹⁹ Center for Resilient Conservation Science, The Nature Conservancy. "Resilient and Connected Network: TNC Customized (Detailed)." TNC Geospatial Data (ArcGIS REST Service), updated May 31, 2022. GIS dataset. <https://geospatial.tnc.org/datasets/resilient-and-connected-network-tnc-customized-detailed> (accessed August 2024)

SLAMM - Salt Marsh Migration Areas (NH²⁰ and MA²¹)	MA: Initial condition with global mean intermediate-low sea-level rise (2.3 ft by 2050) using conceptual salt marsh units	4	
River Corridors	Buffered areas of streams ²² and natural land cover ²³	3	NH & MA

²⁰ NOAA Office for Coastal Management. "SLAMM Salt Marsh Migration Areas: New Hampshire - Initial Condition & Migration Potential, Year 2050 (5 m SLR)." Digital Coast, NOAA, 2023. GIS dataset. <https://coast.noaa.gov/digitalcoast/tools/slamm.html> (accessed August 2024)

²¹ Massachusetts Executive Office of Energy and Environmental Affairs, Coastal Zone Management. "Massachusetts SLAMM 2100 Wetlands - Intermediate-Low Sea-Level Rise (2.3 ft)." ArcGIS Online, updated 28 Nov 2023. GIS dataset. <https://www.arcgis.com/home/item.html?id=d53f2a2b82f0478b8ad47d51cef5f0c2> (accessed August 2024).

²² U.S. Geological Survey, *National Hydrography Dataset Plus (NHDPlusV2): Flowlines and Catchments*, available online at <https://www.usgs.gov/national-hydrography/nhdplus> (accessed August 2024).

²³ U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center. National Land Cover Database (NLCD) 2021 Products [GIS dataset]. U.S. Geological Survey data release; DOI: 10.5066/P9JZ7A03. Released July 24, 2023; current through 2021 land cover epoch. <https://www.usgs.gov/data/national-land-cover-database-nlcd-2021-products> (accessed August 2024).

Working Lands

Priority Agricultural Resources

For the 2025 Merrimack Conservation Plan update, the methodology from the **2021 New Hampshire Coastal Watershed Plan Update** (Steckler and Ormiston 2021)²⁴ was adapted to identify **Priority Agricultural Resources (PAR)** within the Merrimack Conservation Partnership (MCP) Service Area in Massachusetts and New Hampshire. This analysis was designed to highlight areas with the highest capacity for productive, versatile and resilient agriculture while accounting for development patterns and conservation priorities.

The prioritization relied on two primary datasets:

1. **Farmlands Under Threat's Productive, Versatile and Resilient Agricultural Lands (PVR)**²⁵ scores (Freedgood et al., 2020)²⁶, which measure soil productivity and resilience.
2. **NOAA Coastal Change Analysis Program (C-CAP)**²⁷ 30-meter land cover data, used to remove developed land classes.

PVR coverages for New Hampshire and Massachusetts were mosaicked and data within the MCP Service Area were extracted. PVR scores were scaled and converted to integers for analysis. Using zonal statistics, a **median PVR threshold of 0.269** was applied as the primary criterion for identifying high-value agricultural lands. Areas meeting or exceeding this threshold were selected, with size thresholds applied based on location:

- **Within MCP Urban Area:** No minimum acreage requirement.
- **Outside MCP Urban Area:** A minimum size of **10 acres** was required.

²⁴ Steckler, P. and Ormiston, A. 2021. [New Hampshire's Coastal Watershed Conservation Plan, 2021 Update](#). The Nature Conservancy. Concord, NH.

²⁵ American Farmland Trust and Conservation Science Partners. Farms Under Threat: Productivity, Versatility, and Resiliency of Agricultural Lands (PVR)[GIS dataset] <https://farmlandinfo.org/publications/farms-under-threat-the-state-of-the-states/>

²⁶ Freedgood, J., M. Hunter, J. Dempsey, A. Sorensen. 2020. [Farms Under Threat: The State of the States](#). Washington, DC: American Farmland Trust.

²⁷ NOAA Office for Coastal Management. Coastal Change Analysis Program (C-CAP) 30-Meter Land Cover Data [GIS dataset]. NOAA Digital Coast, 2021. <https://coast.noaa.gov/digitalcoast/data/ccap.html> (accessed August 2024).

Developed land classes were removed using C-CAP data and contiguous areas were dissolved to create unified polygons. Each polygon was updated with its mean PVR score using zonal statistics, providing a clear measure of agricultural potential.

The resulting dataset identifies lands with the highest capacity for productive and resilient agriculture, offering a transparent, data-driven foundation for conservation practitioners to prioritize farmland protection and for municipal decision makers to guide land-use planning and agricultural resource management.

Prime Forestry Lands

To inform conservation planning and municipal decision-making, a GIS-based analysis was completed to identify prime forestry lands within the Merrimack Conservation Partnership (MCP) Service Area. This analysis integrates soil quality, forest block size and species composition to prioritize areas that offer the greatest potential for sustainable forestry and long-term forest conservation.

The analysis began with the selection of key datasets (see Table 2 for data sources): **Forest Soil Groups (IA, IB, IC)** from the USDA SSURGO soil survey, **large forest blocks** (≥ 500 acres in New Hampshire and ≥ 125 acres in Massachusetts) and updated prime forest land classifications for white pine and red oak based on recent land cover data. Regional Connectivity Network (RCN) data were also included to account for landscape connectivity.

A **weighted overlay approach** was used to combine these inputs, assigning weights based on their relative importance to forestry potential (See Table 2 for entire weighting schema). Prime forest soils for white pine and red oak received the highest weight (5), reflecting their exceptional suitability for timber production. Forest Soil Group IA was weighted at 3, IB at 2 and IC at 1, while large forest blocks and BioMap forest cores were weighted at 3 to emphasize the value of contiguous forest landscapes. RCN was included with a weight of 1 to maintain ecological connectivity.

All layers were processed and reclassified to ensure consistency across the MCP Service Area, buffered by five miles. For prime forest soils, polygons were dissolved by soil class and filtered to include only areas ≥ 50 acres, following guidance from the 2014 Merrimack Valley Regional Conservation Plan. This approach focuses on larger forest blocks that offer greater economic viability for forestry while avoiding conflicts with sensitive wetlands.

After applying the weighted overlay, areas scoring **8 or higher** and meeting a minimum size threshold of **20 acres** the buffered MCP Service Area were identified. These areas represent the highest priority for forest conservation and management, balancing ecological integrity with economic forestry potential.

The resulting dataset provides a transparent, data-driven foundation for conservation practitioners to target land protection and for municipal decision makers to guide land-use planning, ensuring that prime forestry resources are maintained for future generations.

Table 2: Prime Forestry Soils weighted overlay input data, weights and spatial extent.

Input Data	Category	Weight	Spatial Extent
Soil Survey ²⁸	Soil Survey: Forest Soil Group IA (>=50 acres)	3	MCP Service Area Buffered extent (5mi)
	Soil Survey: Forest Soil Group IB (>=50 acres)	2	MCP Service Area Buffered extent (5mi)
	Soil Survey: Forest Soil Group IC (>=50 acres)	1	MCP Service Area Buffered extent (5mi)
Forest Blocks	BioMap: Forest Core ²⁹	3	MA - MCP Service Area Buffered extent (5mi)
	NH Forest Blocks ³⁰	3	NH - MCP Service Area Buffered extent (5mi)
Resilient and Connected Network ³¹	RCN	1	MCP Service Area Buffered extent (5mi)
Prime Forest Soils ³²	Prime Forest Soils - White Pine- Prime 1, 2, & 3 Classes (>=50 acres)	5	MCP Service Area Buffered extent (5mi)
	Prime Forest Soils - Red Oak- Prime 1,2, & 3 Classes (>=50 acres)	5	MCP Service Area Buffered extent (5mi)

²⁸ Natural Resources Conservation Service, United States Department of Agriculture, *Soil Survey Geographic (SSURGO) Database for New Hampshire and Massachusetts*, available online at <https://sdmdataaccess.sc.egov.usda.gov> (accessed August 2024).

²⁹ Massachusetts Division of Fisheries and Wildlife and The Nature Conservancy, *BioMap: Core Habitat*, MassGIS Data, available online at <https://www.mass.gov/info-details/massgis-data-biomap-the-future-of-conservation> (accessed August 2024).

³⁰ New Hampshire Division of Forests and Lands, *Forest Resource Assessment - Forest Legacy Program* (developed by Innovative Natural Resource Solutions, LLC and The Nature Conservancy - New Hampshire, 2019).

³¹ Center for Resilient Conservation Science, The Nature Conservancy. "Resilient and Connected Network: TNC Customized (Detailed)." TNC Geospatial Data (ArcGIS REST Service), updated May 31, 2022. GIS dataset. <https://geospatial.tnc.org/datasets/resilient-and-connected-network-tnc-customized-detailed> (accessed August 2024)

³²This was updated to include the entire MCP Service Area using the methods from MassGIS's Prime Forest land. MassGIS (Bureau of Geographic Information), *Prime Forest Land*, available online at <https://gis.data.mass.gov/datasets/massgis::prime-forest-land/about> (accessed August 2024)

Water Resources

Pollutant Attenuation and Removal

GIS analysis was used to identify and rank riparian buffers and wetlands within the MCP Service Area that are most effective at reducing pollutants, with emphasis on areas where natural vegetation and wetlands intercept runoff and improve water quality. This approach follows the methodology outlined in ***Land Conservation Priorities for the Protection of Coastal Water Resources: A Supplement to The Land Conservation Plan for New Hampshire's Coastal Watersheds*** (Steckler, Glode and Flanagan 2016)³³, supporting informed conservation planning.

The study area included the Merrimack River HUC4 watershed. Several key datasets were used in this analysis (see below for list data sources): stream and catchment data from the National Hydrography Dataset Plus, wetland data from the National Wetlands Inventory, land cover from the 2021 National Land Cover Database and LiDAR elevation data for New Hampshire and Massachusetts.

The analysis began by mapping buffer zones along streams and wetlands. These included riparian buffers around perennial streams and freshwater wetlands (50–100 meters) and tidal wetlands (200 meters horizontally plus a 2-meter vertical buffer based on elevation). These buffers were merged to represent areas most likely to intercept pollutants.

Buffers were prioritized by evaluating their connectivity and restoration potential. Distances from tidal wetlands to riparian buffers were calculated and areas were grouped into lower, middle and upper watershed zones for the entire HUC 4 Merrimack Watershed. Land cover was analyzed to identify natural or restorable buffers. Riparian wetlands were assessed for their capacity to remove nitrogen and other pollutants. Wetlands adjacent to streams and lakes were identified and ranked by size and wetness, with the highest-performing wetlands classified as Tier 1 and secondary areas as Tier 2.

Finally, buffer and wetland priorities were combined into a single tiered system. **Tier 1 areas include catchments with the most connected buffers or top-ranked wetlands, while Tier 2 areas include connector buffers, headwater zones and secondary wetlands.** These areas were refined to remove fragments and align boundaries with natural features.

³³ Steckler, Peter, Joanne Glode, and Shea Flanagan. 2016. Land Conservation Priorities for the Protection of Coastal Water Resources: A Supplement to The Land Conservation Plan for New Hampshire's Coastal Watersheds. Prepared for the New Hampshire Department of Environmental Services Coastal Program. Technical Report, Concord, NH: The Nature Conservancy.

This tiered approach highlights where conservation or restoration will have the greatest impact on water quality, helping municipalities target resources and land-use decisions effectively.

Data Sources:

- National Hydrography Dataset Plus (NHDPlusV2)³⁴ flowlines and catchments
- National Wetlands Inventory (NWI)³⁵
- 2021 National Land Cover Database (NLCD)³⁶
- LiDAR-derived elevation data (NH³⁷ and MA³⁸)

Public Water Supply Areas

Using the methodology outlined in ***Land Conservation Priorities for the Protection of Coastal Water Resources: A Supplement to The Land Conservation Plan for New Hampshire's Coastal Watersheds*** (Steckler, Glode and Flanagan 2016)³⁹, a GIS-based analysis was completed to **identify catchments critical to public water supply** within the MCP Service Area. This analysis integrates both surface water and groundwater resources to prioritize areas for protection. The goal was to create a tiered system that ranks catchments by their contribution to public water supply, ensuring that conservation efforts align with water resource protection.

³⁴ U.S. Geological Survey, *National Hydrography Dataset Plus (NHDPlusV2): Flowlines and Catchments*, available online at <https://www.usgs.gov/national-hydrography/nhdplus> (accessed October 2024).

³⁵ U.S. Fish and Wildlife Service, *National Wetlands Inventory (NWI)*, available online at <https://www.fws.gov/program/national-wetlands-inventory> (accessed October 2024)

³⁶ U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center. National Land Cover Database (NLCD) 2021 Products [GIS dataset]. U.S. Geological Survey data release; DOI: 10.5066/P9JZ7A03. Released July 24, 2023; current through 2021 land cover epoch. <https://www.usgs.gov/data/national-land-cover-database-nlcd-2021-products> (accessed October 2024).

³⁷ NH GRANIT, *LiDAR-Derived Bare Earth DEM (2022) – New Hampshire*, available online at <https://new-hampshire-geodata-portal-1-nhgranit.hub.arcgis.com/datasets/NHGRANIT::lidar-derived-bare-earth-dem-2022-nh/about> (accessed October 2024)

³⁸ MassGIS (Bureau of Geographic Information), *LiDAR Terrain Data*, available online at <https://www.mass.gov/info-details/massgis-data-lidar-terrain-data> (accessed October 2024)

³⁹ Steckler, Peter, Joanne Glode, and Shea Flanagan. 2016. *Land Conservation Priorities for the Protection of Coastal Water Resources: A Supplement to The Land Conservation Plan for New Hampshire's Coastal Watersheds*. Prepared for the New Hampshire Department of Environmental Services Coastal Program. Technical Report, Concord, NH: The Nature Conservancy.

The analysis integrated multiple datasets, including hydrologic areas of concern and surface water intake zones for **surface water resources**, as well as **groundwater-related data** such as groundwater classifications (GA1, GA, GAA), favorable gravel well sites, high-yield stratified drift aquifers and wellhead protection areas. See below for full list of data sources.

Using NHDPlus V2 catchments as the base unit, fields were added to store tier attributes and applied a tiered classification system. Tier 1 catchments contribute to both surface and groundwater supply with at least 10% overlap; Tier 2 catchments contribute to either surface or groundwater supply with at least 50% overlap and Tier 3 catchments have a moderate contribution with 5–49% overlap.

The GIS workflow included merging and clipping resource layers to the watershed boundary, intersecting these layers with catchments, calculating acreage and percentage overlap for each catchment and assigning tiers based on defined thresholds. The final output is a catchment-level dataset with tier attributes, clipped to the Merrimack Conservation Partnership Service Area, highlighting priority areas for conservation based on their role in public water supply.

This tiered approach provides a transparent, data-driven framework for conservation practitioners to target land protection where it most benefits water security and for municipal decision makers to inform zoning, development and resource management policies.

Data Sources

- **Surface Water:**
 - Hydrologic Areas of Concern (HAC)⁴⁰
 - MA Surface Water Intake Areas⁴¹ and water supply protection areas⁴²
- **Groundwater:**
 - Groundwater Classes (GA1, GA, GAA)⁴³

⁴⁰ New Hampshire Department of Environmental Services. *Hydrologic Areas of Concern (HAC)*. GIS dataset

⁴¹ MassGIS (Bureau of Geographic Information), *Public Water Supplies*, available online at <https://www.mass.gov/info-details/massgis-data-public-water-supplies> (accessed October 2024)

⁴² MassGIS (Bureau of Geographic Information), *Surface Water Supply Protection Areas: Zone A, B, C*, available online at <https://www.mass.gov/info-details/massgis-data-surface-water-supply-protection-areas-zone-a-b-c> (accessed October 2024).

⁴³ New Hampshire Department of Environmental Services. *Groundwater Classification Areas*. GIS dataset. Updated April 1, 2025. Available online: <https://experience.arcgis.com/experience/c67c8c7dab844987852c9c4b3283b041/page/Primary-Page?views=Layer-List>

- Favorable Gravel Wells⁴⁴
- High-Yield Stratified Drift Aquifers⁴⁵
- Wellhead Protection Areas⁴⁶

Renaturing

A GIS-based analysis was completed to **identify areas suitable for renaturing areas to enhance groundwater recharge** within the MCP Service Area. This analysis focused on mapping impervious surfaces and underlying soil characteristics to prioritize locations where restoring natural conditions would most effectively improve infiltration and water resource resilience.

The primary objective was to distinguish impervious and pervious areas across the MCP Service Area and evaluate soil properties that influence infiltration potential. Input data for the analysis used NOAA's Coastal Change Analysis Program (CCAP) impervious cover data⁴⁷ for New Hampshire and Massachusetts and SSURGO soil data⁴⁸ from the USDA, which classifies soils into hydrologic groups (A, B, C, D and combinations) based on their infiltration capacity.

Impervious data were processed by extracting state-specific rasters, converting them to simplified polygons and removing pervious areas to reduce file size. The New Hampshire and Massachusetts impervious layers were then merged into a single, seamless dataset representing all impervious surfaces within the watershed. Soil data were similarly merged and clipped to the Merrimack Conservation Partnership service area, ensuring that hydrologic soil group attributes were preserved.

⁴⁴ New Hampshire Department of Environmental Services. *Favorable Gravel Wells*. GIS dataset.

⁴⁵ New Hampshire Department of Environmental Services, *Statewide Aquifer Transmissivity for New Hampshire*, available online at <https://new-hampshire-geodata-portal-1-nhgranit.hub.arcgis.com/datasets/NHGRANIT::statewide-aquifer-transmissivity-for-new-hampshire/about> (accessed October 2024).

⁴⁶ New Hampshire Department of Environmental Services. *Wellhead Protection Areas*. GIS dataset. Updated April 1, 2025. Available online: <https://experience.arcgis.com/experience/c67c8c7dab844987852c9c4b3283b041/page/Primary-Page?views=Layer-List>

⁴⁷ National Oceanic and Atmospheric Administration, Office for Coastal Management. "Coastal Change Analysis Program (C-CAP) High-Resolution Land Cover (Impervious Surfaces)." Raster dataset. NOAA Digital Coast, n.d. Accessed October 2024. <https://coast.noaa.gov/digitalcoast/data/ccaphighres.html>.

⁴⁸ Natural Resources Conservation Service, United States Department of Agriculture, *Soil Survey Geographic (SSURGO) Database for New Hampshire and Massachusetts*, available online at <https://sdmdataaccess.sc.egov.usda.gov> (accessed October 2024).

The processed soil data was intersected with the processed impervious surfaces to identify where renaturing would most effectively restore infiltration capacity. Roads were excluded due to their low restoration feasibility, allowing the analysis to focus on areas with the greatest potential for groundwater recharge.

The resulting dataset delineates priority areas for renaturing based on soil infiltration capacity and existing impervious surface coverage. This dataset provides a data-driven foundation for conservation practitioners to prioritize restoration initiatives that enhance groundwater recharge and for municipal decision-makers to inform land-use planning and stormwater management strategies. The dataset currently includes building rooftops, which present opportunities for green infrastructure such as rooftop gardens. However, further refinement to exclude building footprints would allow greater focus on high-impact areas, such as parking lots, enabling targeted implementation of green solutions like replacing impervious asphalt with permeable, water-filtration surfaces.

Appendix 5

Conservation Status and Trends

Land Protection Trends	2
Trends in Land Cover Change	4

Land Protection Trends

Within the Merrimack Conservation Partnership (MCP) Service Area, approximately 476,992 acres (25 percent) fall into identified conservation gap statuses as defined by the USGS Gap Analysis Program (GAP)¹. These statuses reflect varying levels of legal protection and management intent.

GAP Status Categories (See Table 1 for detailed breakdown):

- **GAP Status 1 & 2:** Lands with permanent protection and management plans aimed at maintaining a natural or primarily natural state. These fully protected lands account for 59,860 acres (three percent).
- **GAP Status 3:** Lands with permanent protection but allowing extractive uses (e.g., forestry). This category represents the largest gap, covering 341,726 acres (18 percent), with 196,441 acres in NH and 145,285 acres in MA. These lands offer the greatest opportunity for advancing conservation outcomes through enhanced management or stricter protection.
- **GAP Status 4:** Lands without legal protection or institutional mandates to prevent conversion to anthropogenic uses. These minimally protected lands total 63,429 acres (three percent).
- **GAP Status 9:** Lands with unknown protection or management status, totaling 11,978 acres (one percent), primarily in NH.

Trend Analysis (2014–2025):

Between 2014 and 2025, land conservation within the Merrimack Conservation Partnership (MCP) Service Area has shown notable fluctuations (see Figure 1). The highest acreage protected occurred in 2022, with 3,906 acres, followed closely by 2014 at 3,677 acres. Other strong years include 2018 and 2019, each exceeding 3,000 acres and 2020 with 2,746 acres. Mid-range years such as 2015 and 2016 hovered around 2,674–2,700 acres, while 2017 and 2021 saw lower totals near 1,937 and 1,954 acres respectively.

Recent years reflect a downward trend, with 2023 dropping to 1,117 acres and 2024 to 954 acres. The linear trend indicates an average decrease of approximately 150 acres per year in land protection across the MCP Service Area. However, this apparent decline may not fully represent actual conservation activity. The most recent update effort for inventorying conservation lands in New Hampshire concluded in September 2024 and there is a possibility that some land protection projects have not yet been submitted to state

¹U.S. Geological Survey. *Gap Analysis Project: How well are we protecting common plants and animals?*. 2022. U.S. Geological Survey. <https://www.usgs.gov/programs/gap-analysis-project>

databases. Additionally, conservation projects often take time to finalize, so some recent efforts may still be in progress and not yet recorded.

Overall, while early and mid-period years achieved substantial conservation gains, the trendline suggests a need for renewed strategies to maintain momentum—while recognizing that reporting lags and incomplete submissions may influence recent figures.

Table 1: Conservation Gap Status Acreage and Percentages within the MCP Service Area for New Hampshire and Massachusetts. This table summarizes the extent of lands by GAP Status categories (1 & 2, 3, 4 and 9) within the MCP Service Area. Values are shown for New Hampshire (NH), Massachusetts (MA) and combined totals, with corresponding percentages of each state's MCP Service Area and the overall MCP Service Area.

	NH	Percent of NH MCP Service Area	MA	Percent of MA MCP Service Area	Total MCP Service Area	Percent of MCP Service Area
Gap Status 1 & 2	27,293	2%	32,568	4%	59,860	3%
Gap Status 3	196,441	18%	145,285	19%	341,726	18%
Gap Status 4	25,090	2%	38,339	5%	63,429	3%
Gap Status 9 (unknown)	11,084	1%	894	0.1%	11,978	1%
TOTAL	259,907	23%	217,085	28%	476,992	25%

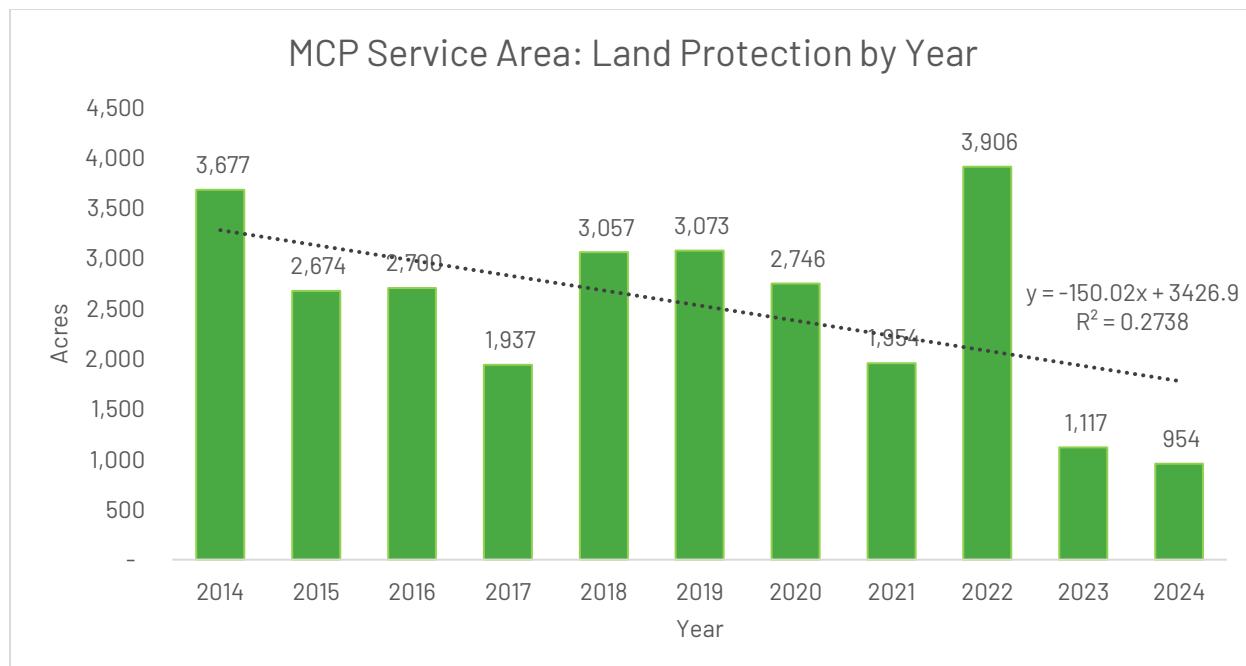


Figure 1: Annual acres of land protected within the MCP Service Area from 2014 to 2024 show significant year-to-year variation, with a peak in 2022 (3,906 acres) and a general downward trend over time ($R^2 = 0.27$), indicating declining conservation rates in recent years. This analysis was done using Gap 1-3 and areas noted as protected in perpetuity.

Trends in Land Cover Change

To accurately represent land cover in the Merrimack Conservation Partnership (MCP) Service Area, annual National Land Cover Database (NLCD) data for 2014² and 2024³ were integrated with USDA Cropland Data Layer (CDL) datasets⁴⁵—including the 2014 and 2024 National CDL (30-meter) products. This combined approach provides a comprehensive and

² U.S. Geological Survey. *National Land Cover Database (NLCD) 2014 Annual Land Cover Data*. Earth Resources Observation and Science (EROS) Center. Accessed December 2025. <https://www.usgs.gov/centers/eros/science/annual-nlcd-data-access>.

³ U.S. Geological Survey. *National Land Cover Database (NLCD) 2024 Annual Land Cover Data*. Earth Resources Observation and Science (EROS) Center. Accessed December 2025. <https://www.usgs.gov/centers/eros/science/annual-nlcd-data-access>.

⁴ USDA NASS. *2014 National Cropland Data Layer (30-Meter CDL)*. Accessed December 2025. https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php.

⁵ USDA NASS. *2014 National Cropland Data Layer (30-Meter CDL)*. Accessed December 30, 2025. https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php.

reliable depiction of regional land cover patterns over the 10-year span of the previous conservation plan.

Analysis of these datasets shows **minimal land conversion between 2014 and 2024** (Figure 2), with the landscape remaining largely stable and dominated by forest and developed categories. Approximately 58 percent of the total area persisted as forest, while agricultural lands remained stable at about six percent and early successional vegetation accounted for a small fraction (0.4 percent). Transitions between categories were modest. The largest changes involved forest converting to other uses: about one percent shifted to early successional vegetation, one percent to agriculture and 0.8 percent to development. Early successional areas showed dynamic behavior, with roughly one percent reverting to forest. Agricultural land contributed small flows to development (0.8 percent).

Overall, the combined annual NLCD (2014 and 2024) and CDL data confirm that Merrimack's land cover has been highly stable over the past decade, with only minor exchanges among forest, agriculture and developed categories—consistent with regional planning goals and limited development pressure.

Important Consideration: Dispersed Development

NLCD land cover classification might not fully capture the conversion of natural areas to dispersed, low density development areas, so this analysis likely underestimates this type of change.⁶ Although these conversions may seem minor when viewed collectively, they can gradually diminish ecosystem functions and services, fragment habitats and weaken landscape connectivity.

Implications for Conservation and Planning

The stability of land cover suggests that existing conservation strategies have been effective in limiting fragmentation and large-scale conversion. Forest persistence supports biodiversity and carbon storage goals, while modest agricultural and development transitions indicate low pressure for land-use change. Future planning can build on this stability by prioritizing forest connectivity, managing early successional habitats for wildlife and monitoring localized development to ensure alignment with conservation objectives. While this trend allows conservation efforts to focus resources on resilience and climate adaptation, it remains essential to protect and restore land—particularly areas outlined in the updated conservation plan that safeguard natural areas with multiple-benefit conservation values. These priorities aim to maintain critical ecological functions and integrity at the watershed scale, which is especially important in the face of ongoing threats from habitat loss and climate change.

⁶ Steckler, P. and Ormiston, A. 2021. New Hampshire's Coastal Watershed Conservation Plan, 2021 Update. The Nature Conservancy. Concord, NH.

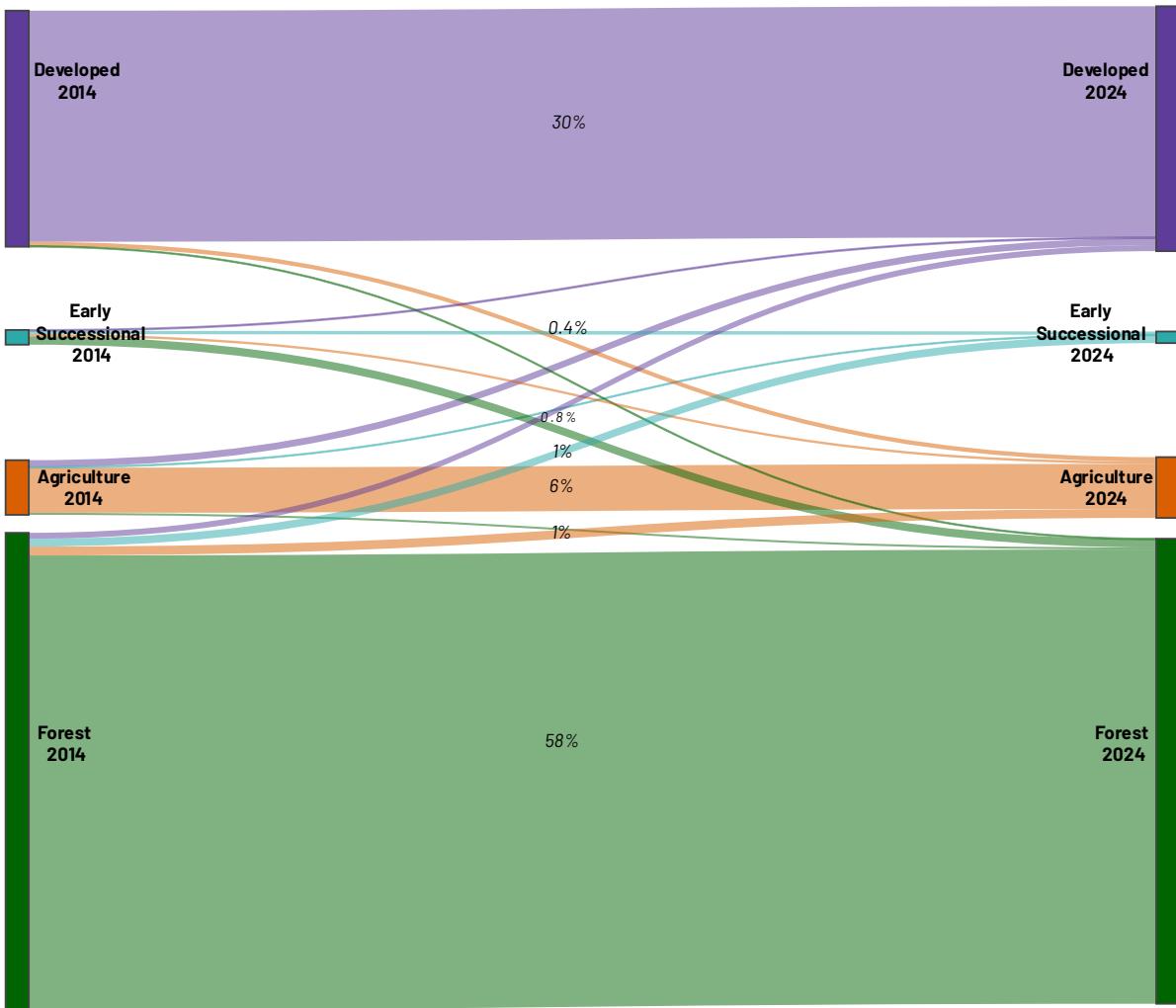


Figure 2: Land cover transitions within the Merrimack Conservation Partnership Service Area (2014 – 2024) represented as a Sankey diagram. Each ribbon indicates the proportion of land transitioning from a class in 2014 (left) to a class in 2024 (right). Forest comprises 58% of the area, Developed accounts for 30%, Agriculture represents 6% and Early Successional covers 0.4%. Narrower ribbons depict smaller transitions between classes. Ribbon width corresponds to the percentage of total area and labeled percentages highlight key findings. Flows are color-coded by their destination class. (Note: Wetlands, barren land and open water are excluded from this diagram. For clarity, all NLCD developed categories have been consolidated into a single “Developed” class to simplify visualization.)