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1. Introduction 
This technical annex provides an overview of the spatial modeling methodologies, datasets, and 
frameworks used to support Smart Siting Guide for Portugal. It is designed to serve as 
documentation of methods and a technical reference for practitioners, planners, and researchers 
engaged in renewable energy siting. 

The annex is structured to guide users through the modeling pipeline, from the development of 
probabilistic maps of wind and solar energy potential, to the integration of biodiversity and social 
value layers for identifying low conflict areas. It details the data sources, spatial analysis 
techniques, and modeling decisions used for the energy development potential maps (Chapter 2). 
It also outlines the biodiversity mapping approach using a coarse-filter/fine-filter framework 
(Chapter 3), and the social values mapping methodology, including viewshed analysis based on 
social media-derived landscape values and cultural heritage datasets (Chapter 4).  

Whether used to replicate the modeling process, adapt it to other geographies, or inform policy 
and planning decisions, this annex provides the technical foundation for evidence-based, nature-
inclusive renewable energy siting. All data used or produced for the Smart Siting analysis are 
available in open data formats compatible with any GIS software and can be downloaded at 
www.nature.org/en-us/about-us/where-we-work/europe/stories-in-europe/smart-siting-
renewable-energy-portugal. Final outputs from the Smart Siting analysis can be viewed within a 
web mapping application at https://tnc-ps-web.s3.amazonaws.com/Renewables/PRT/index.html. 

  



2. Energy modeling 
Our energy modeling analysis focused on creating Development Potential (DP) maps to predict 
where future onshore wind turbines and ground-mounted photovoltaic (PV) solar farms are most 
likely to be built across mainland Portugal. These DP maps rank DP from 0 (highly unlikely) to 1 
(highly likely) and help guide decision makers in understanding where potential impacts may occur 
from development (Oakleaf et al., 2019). When combined with biodiversity and social value 
layers, these DP maps are a critical component of the smart siting approach (Sochi et al., 2023).       

Given Portugal’s strong commitment to renewable energy, previous wind and photovoltaic (PV) 
development has occurred across the country. Due to publicly available and accurately mapped 
past development locations, a predictive modeling approach was used to produce a DP map for 
each technology. This process has two main components: spatial data preparation using 
Geographic Information System (GIS) techniques and spatial statistical modeling.  

Due to previous modeling experiences (Copeland et al., 2009; Evans & Kiesecker, 2014; Strager 
et al., 2015; Kiesecker et al., 2023), we applied a non-parametric, probabilistic Random Forests 
(RF) algorithm (Breiman, 2001), using a bootstrapped Classification and Regression Tree (CART) 
approach for modeling both wind and PV DP.  This modeling technique required three key data 
products:  

i) a map representing presence and absence of both wind and PV development;  
ii) a map of technically suitable lands for future development; and  
iii) a set of parameters maps that are known drivers of development.   

Specifically, our workflow followed a nine-step process to produce each DP map (Figure 1): 

1. Map Existing Development: We created validated maps of current wind and PV 
installations across mainland Portugal. 
 

2. Identify Technically Suitable Lands: Mapped areas suitable for future wind and PV 
development by applying technical exclusion criteria. 
 

3. Generate Presence/Absence Data: Derived point locations for existing (present) and non-
developed (absent) RE sites to support predictive modeling. 
 

4. Map Influential Parameters: Identified and mapped spatial parameters known to 
influence wind and PV development (e.g., slope, grid proximity, capacity factors). 
 

5. Build Training Dataset: Assigned parameter values to all present and absent locations to 
create a comprehensive training dataset. 
 



6. Select Key Parameters: Used the rfUtilities package in R to remove highly correlated 
variables and select the most significant predictors for the model development (Liaw & 
Wiener, 2002; Murphy et al., 2010; R Core Team, 2021;  Evans, 2025a; 2025b) 
 

7. Run Random Forest Models: Applied the ranger package in R to build ensemble Random 
Forest models for wind and PV development potential (Wright et al., 2024). 
 

8. Validate Model Performance: Assessed model accuracy using metrics like log loss, 
Cohen’s Kappa, and AUC/ROC to ensure reliability. 
 

9. Generate DP Maps: Applied the final models across technically suitable lands to produce 
probabilistic maps of future wind and PV development potential. 

 
Figure 1: TNC Development Potential (DP) mapping workflow. 

Initial draft wind and PV DP maps were presented to an expert working team in September 2024. 
Based on their feedback, the datasets and modeling inputs were updated, resulting in a second 
round of DP maps. These revised maps were then shared with LNEG and APREN in December 
2024, February 2025 and June 2025. Further input from these meetings led to additional 
refinements, culminating in a finalized set of parameter datasets presented on the next section 
(Table 1). 

During the modeling process, preliminary results revealed distinct drivers of development when 
comparing small-scale PV projects (smaller or equal to 10 ha) to large-scale PV projects (greater 
than 10 ha). Based on this finding, the PV modeling was split into two separate tracks. The 10 



hectare threshold was chosen based on the median size of solar farms in the training dataset and 
aligns closely with the 5 MWac capacity benchmark commonly used to define large-scale solar 
farms (Bolinger & Bolinger, 2022). This separation not only improved model accuracy but also 
enabled planners to explore different development scenarios (e.g., several small installations 
versus fewer large ones) and better support community-level land use planning. 

Additionally, due to high grid saturation in Portugal, two additional models were developed: one 
that excluded substation parameters, and another that excluded all power grid-related parameters. 
These versions helped to identify development drivers beyond grid infrastructure and offered 
insights into where grid expansion might be needed to meet long-term renewable energy targets. 

In total, our modeling effort produced nine intermediate DP maps (three for wind, three for large-
scale PV, and three for small-scale PV). These were used to generate one final wind DP 
map and two final PV DP maps (split by size). From these, we identified technically suitable areas 
with high development potential (DP value greater or equal than 0.65) for each technology. These 
binary maps were then integrated with biodiversity and social value layers as part of TNC’s Smart 
Siting analysis for Portugal. 

 

2.1. Detailed methods for the Development Potential models 

2.1.1. Spatial analysis properties and technologies applied 

Our analysis focused on mainland Portugal, which was identified using a Portugal boundary map 
(DGT, 2023) and refined by more accurate coastline representation (OSM, 2024). For all spatial 
data, we relied on a commonly used Portugal-specific projection of ETRS 1989 Portugal TM06 
(EPSG:3763) and projected all data to this coordinate system prior to any derivative spatial 
analysis, raster conversion, or modeling efforts. All raster datasets used in this analysis were 
created at 100-m resolution. To ensure common data values and alignment of pixels for all raster 
datasets, we produced a raster analysis mask by converting the mainland Portugal feature 
(described above) to a 100-m resolution raster dataset which included all pixels with at least 50% 
of the pixel within the boundary. All spatial analyses and modeling were conducted using ArcGIS 
(ESRI, 2024) and QGIS (QGIS Development Team), as well as automated workflows in Python 
and R, utilizing appropriate modules, packages and libraries.  

2.1.2. Current wind and solar development  

To map existing renewable energy infrastructure, wind turbines and solar farms locations were 
gathered from three sources of data: 

i) Directorate General for Energy and Geology (DGEG, 2024); 
ii) Global Renewables Watch (GREW, 2024); 
iii) Endogenous Energies of Portugal (E2P, 2024). 



All datasets were visually validated using recent satellite (Planet Labs, 2024) and aerial (OrtoSat, 
2023) imagery to confirm that mapped features corresponded to actual installations. 

Wind Turbines:  

We validated a total of 2,812 wind turbines across Portugal. Of these: 

 2,498 turbines (89%) were mapped by both DGEG and GReW; 

 202 turbines (7%) were uniquely identified by DGEG; 

 112 turbines (4%) were uniquely identified by GReW. 

E2P data were excluded from wind modeling because they provided only wind farm locations, not 
individual turbine points, which are required for spatial modeling. 

For the final wind turbine map, we relied first on locations from DGEG and only used GReW 
locations when data were missing from the DGEG dataset (n=112). We based this decision on 
visual inspection of the two data sources and found DGEG points were often closer to the true 
ground location associated with the base of turbine than those points associated with GReW. For 
modeling efforts, one turbine location was removed due to it being an isolated, demonstration 
turbine located within a turbine factory. 

Solar Farms: 

The same three sources (DGEG, GReW, and E2P) were used to map solar farms, with all data 
validated using Planet (Planet Labs, 2024) and aerial (OrtoSat, 2023) imagery. Before validation, 
we excluded solar farms smaller than 1 hectare, as these typically represent rooftop installations 
not relevant to this study.  

We validated 268 solar farms, covering a total area of 7,816 hectares, with sizes ranging from 1 ha 
to 772 ha. From these: 

 118 farms (44%) were identically mapped by both DGEG and GReW; 

 80 farms (30%) were uniquely mapped by DGEG; 

 64 farms (24%) were uniquely mapped by GReW; 

 6 farms (2%) were identified only by E2P. 

Since E2P provided only point locations, we screen-digitized the boundaries of these six farms 
using Planet imagery (Planet Labs, 2024). In a similar process realized for the wind turbines, we 
prioritized DGEG solar farm boundaries and used GReW and E2P data only when DGEG coverage 
was missing. For modeling purposes, we focused exclusively on ground-mounted solar farms, 
reducing the final dataset to 251 installations. This filtering excluded: 

 16 rooftop solar farms on industrial/commercial buildings 

 1 floating solar farm 

 3 mixed installations, which were modified to include only the ground-mounted portion 



2.1.3. Technically suitable lands for wind and solar development  

To identify where future wind and solar development could technically occur, we applied a series 
of exclusion criteria. These exclusions were based on three main factors: 

 Resource limitations (e.g., low wind speeds); 

 Biophysical constraints (e.g., steep slopes); 

 Conflicting land uses (e.g., residential areas or artificial surfaces). 

The final technical exclusions selected were supported by feedback from exports and ultimately 
finalized by partner input. 

For wind development, we excluded the following areas: 

 Locations with average wind speeds below 5 m/s (Feedback from expert group); 

 Land with slopes greater than 25% across an entire hectare; 

 All areas classified as artificial surfaces (DGT, 2018); 

 Lands within 100 meters of residential buildings (GTAER, 2024); 

 Areas identified as inland waters (DGT, 2018); 

 Areas within 700 meters of existing wind turbines (n = 2,811), with only those 1-ha pixels 
fully contained within the buffer being removed. 

After applying these exclusions, we removed 19,440 km² (or 21.8% of Portugal’s mainland area) 
from consideration, leaving 69,662 km² as technically suitable for wind development. 

For ground-mounted PV development, we excluded the following areas: 

 Land with slopes greater than 25% across an entire hectare; 

 All areas classified as artificial surfaces (DGT, 2018); 

 Lands within 100 meters of residential buildings (GTAER, 2024); 

 Areas identified as inland waters (DGT, 2018); 

 Lands that overlap with existing solar farms. 

These exclusions were then combined, removing 18,871 km2 (or 21.2% Portugal’s mainland area) 
from further solar development, and thus leaving 70,231 km2 technically suitable for solar 
development.  

2.1.4. Present/absent locational data 

Due to applying a presence/absent predictive modeling approach (e.g., using a Random Forest 
algorithm), it was necessary to produce point data representing not only current wind and PV 
development (present) but also locations identifying where development has yet to occur (absent). 
To create a final present/absent dataset, our methodology required several steps: 

i) Derive point features to represent development (PV only) 
ii) produce random points representing pseudo null locations of development across 

technically suitable lands, and  



iii) combine both the present (current development) and absent (pseudo nulls) locations 
into one dataset.     

Generating development point locations 

With all wind turbines already identified by a point location, this task was necessary for PV only. 
Initial model versions used a single centralized point per PV polygon, but this approach failed to 
reflect the wide variation in solar farm sizes. To address these size discrepancies, we calculated 
the median size of all solar farms and then generated random points within each polygon based on 
a ratio of individual size to this overall median (Eq. 1).  

Number of points per solar farm = 𝑟𝑜𝑢𝑛𝑑 ቀ
𝑎𝑟𝑒𝑎

𝑚𝑒𝑑𝑖𝑎𝑛 + 1
ቁ (1) 

 

We used this method for both the small-scale and large-scale PV with each having a median size 
of 3.41 and 29.46 ha, respectively. For those PV identified as small-scale, points generated per 
farm ranged from 1 to 4 and for those identified as large-scale, points generated per farm ranged 
from 1 to 27. 

 

Pseudo null locations 

To produce our pseudo null locations, we applied pseudo.absence function within the R spatialEco 
package (Evans, 2025a). Using the default settings of the function, we generated pseudo-null 
locations across technically suitable lands at a quantity 1.25 times greater than the number of 
development point locations (e.g., wind turbine points and the randomly generated points within 
small- and large-scale solar farms). By default, pseudo.absence uses the development point 
locations to produce an inversed, Isotropic Kernal Density Estimate (KDE) map with the Scott’s 
Rule applied for bandwidth selection. By setting the ref parameter of this function to a raster dataset 
identifying any technically suitable lands regardless of current development (e.g., technical 
suitable map produced without current development exclusions), an inversed KDE map is 
produced covering only these lands. The pseudo nulls are then randomly created based on weighted 
values associated with the KDE map thus increasing null points produced furthest from 
concentrated development and limiting the number of points closest to development. Additionally, 
by limiting output to only those technically suitable lands, no pseudo-null locations are generated 
on sites which have never been an option for development (e.g., steep slopes).   

 

Combining present and absent locations   

Once development locations and corresponding pseudo null locations were produced, both datasets 
were combined into one point dataset. A field identifying developed locations with a value of 1 



and those absent of development with a value of 0 was added to distinguish each within the 
combined dataset.   

2.1.5. Identify and create spatial parameter datasets 

We created an original set of spatial parameters based on Sochi et al. (2023), which was 
subsequently refined through expert and partner feedback. The final set includes 14 spatial 
parameters: 10 common to both wind and PV development, and 2 additional parameters specific 
to each technology (Table 1). These parameters fall into six main categories:  

 capacity factors; 

 topographic factors; 

 proximity to power grid; 

 accessibility for development; 

 proximity to demand centers;  

 avoidance factors.  

Each parameter was derived from an original source dataset and often required multiple processing 
steps. All source data were reviewed for completeness and accuracy to meet the modeling 
standards. When available, Portugal-specific datasets were prioritized. Final parameter layers were 
produced as raster datasets at 100-meter resolution, using the EPSG:3763 coordinate system, and 
aligned with all other modeling data. 

Capacity factors: 

All development potential models require a map identifying those areas with the highest resources. 
For wind and PV, this is typically represented by wind speeds and Global Horizontal Irradiance 
(GHI), when available. However, spatially explicit capacity factor (CF) maps offer a more accurate 
predictor of development potential, as they integrate resource availability with biophysical 
conditions to estimate power output at a given location. For this analysis, we used two CF maps: 

 A wind CF map (NPESv2) that estimates, at 100-meter resolution, the number of equivalent 
operating hours a wind turbine would produce at nominal power across Portugal (LNEG, 
2025, Personal communication). 

 A PV CF map (PVOUT) that estimates, at 1000-meter resolution, the the daily kilowatt 
hours per kilowatt capacity (kWh/kWp) of PV solar across Portugal (Solar Atlas V2., 
2024). 

For the NPESv2, a capacity factor can directly be derived by dividing the hours identified by the 
dataset by the total hours in a year (8640). NPES values ranged from 1,142 (CF=0.13) to 4,199 
(CF=0.49) hours with 95% of values falling between 1,834 (CF=0.21) and 2,826 (CF = 0.33) 
hours. PVOUT values ranged from 3.36 to 4.84 daily kWh/kWp, with 95% between 3.95 and 4.57 
daily kWh/kWp.   

 



Table 1: Final spatial parameter datasets used in mapping development potential for future wind and ground-mounted photovoltaic 
solar development. Parameters in bold were updated from original effort through expert and partnership feedback. 

Parameter Description Model Units Resolution Data Source 

Wind capacity factor (no. of 
equivalent operation hours at 
nominal power, NEPS v2)  

Wind hours/year 100 m LNEG, 2025 
(Personal 

communication) 

Solar capacity factor -  average 
daily totals (PVOUT) 

Solar kWh/kWp 
per day 

1 km Solar Atlas V2. 
(2024) 

Avg multi-scaled topographic 
position index  

Wind relative 
index 

30 m Global SRTM mTPI 
(2024) 

Average aspect ranking Solar ranking for 
solar 

30 m NASA, SRTM (2024) 

Minimum and average (solar) 
and (wind) percent slope  

Both % 30 m NASA, SRTM (2024) 

Distance from major substations 
(size > 2 ha) 

Both meters ~5 m OSM (2024) 

Distance from all substations 
(size > ¼ ha) 

Both meters ~5 m OSM (2024) 

Distance from transmission lines Both meters ~5 m OSM (2024) 

Distance from power plants Both meters ~5 m DGEG (2024) 

GREW (2024) 

WRI (2024) 

Distance from primary roads Both meters ~5 m OSM (2024) 

Distance from all major roads Both meters ~5 m OSM (2024) 

Distance from major urban areas Both meters 1 km JRC (2025) 

Distance from all cities Both meters 1 km JRC (2025) 

Population density Both number of 
people 

30 m META, 2024 



Since NPESv2 was already projected to EPSG:3763, we aligned it with other datasets using a 
nearest-neighbor adjustment to produce the final wind CF parameter (Figure 2a). Alternative wind 
CF datasets were examined for use (LNEG, 2018; Global Wind Atlas, 2024; New European Wind 
Atlas, 2024), but expert reviewers and project partners confirmed NPESv2 as the most accurate 
and reliable dataset available for Portugal. 

For PV CF, we were limited to using the only publicly available dataset, PVOUT. This raster 
dataset required projecting and aligning all 1000 m2 pixels to our modeling environment using a 
bilinear approach. We then resampled these data to match our 1 ha pixel size by applying the same 
PVOUT value across all overlapping pixels resulting in our final solar CF parameter (Figure 2b). 

Topographic factors: 

All topographic parameters were derived from a global 30-meter resolution Digital Elevation 
Model (DEM) (NASA, SRTM,  2024). The DEM was first projected to EPSG:3763 and aligned 
with the modeling environment using bilinear interpolation. Then separate analysis and resampling 
methods were applied to produce four different parameters derived from DEM data: average, 
multi-scaled topographic position index (mTPI), aspect ranking (de Luis-Ruiz et al., 2024), 
minimum and average slope.  

The mTPI map provides a relative topographic ranking, with higher values representing ridges and 
peaks, and lower values indicating valley bottoms (Theobald et al., 2015). To calculate this metric, 
we relied on the mTPI tool within Topography Toolbox Pro software (Dilts, 2023) and maintained 
the default parameters provided. This tool produced relative values across Portugal at a 30-m 
resolution which were then averaged across the modeled 100-m resolution to produce our final 
mTPI parameter (Figure 3a). Relative values for mTPI ranged from -3.77 to 3.45, with 95% of the 
values occurring between -0.951 and 0.918.  

To rank aspect values for solar, we followed methods established by de Luis-Ruiz et al. (2024) by 
deriving aspect values per pixel and then assigning a simple order ranking of these aspect values 
(Table 2). Again, we aggregated these 30-m pixel data output to our modeling 100-m resolution 
by averaging the values resulting in our final aspect ranking parameter (Figure 3b). 

Finally, we derived a percent slope map from DEM data and calculated two slope parameters: 
minimum slope and average slope. For the minimum slope parameter, we assigned each 1-ha 
modeling pixel with the minimum 30-meter resolution slope value found across each pixel (Figure 
3c). For the average slope parameter, we calculated the average of all 30-m slope values located 
within each modeling pixel (Figure 3d). We applied the minimum slope as a wind parameter due 
to the ground pads of onshore wind turbines not often exceeding 30 m in diameter (Currie et al., 
2015) thus minimizing slope restrictions within a proposed development area. 

 



Table 2: Aspect ranking values 

Category  Aspect Values Assigned Aspect Rank 

Flat -1 5 

North  >315 – 360 and 0 - 45 0 

Northeast >45 - 90 1 

Southeast >90 - 135 3 

South  >135 - 225 5 

Southwest >225 - 270 4 

Northwest >270 - 315 2 

 

 
Figure 2: a) Wind and b) solar capacity factor (CF) model parameter maps. Wind CF values measured in hours of equivalent 
operations at nominal power per year. Solar CF values measured in daily kWh/kWp. All maps have continuous values but are 
classified for display purposes. 



 
Figure 3: Topographic model parameter maps. Multi-scaled topographic position index (mTPI) map (a) and aspect ranking map (b) have unitless relative values with minimum slope 
map (c) and average slope map (d) have values described by percent slope. All maps have continuous values but are classified for display purposes.



Proximity to power grid: 

We defined proximity to the power grid using three key infrastructure features: substations, 
transmission lines, and existing power plants. For substations and transmission lines, we used 
OpenStreetMap (OSM, 2024), selecting features tagged as “power=substation” and “power=line”, 
respectively. For substations, we ensured that all substations were at minimum ¼ hectare in size 
(n=450) and designated major substations as those mapped 2 hectares or greater in size (n=61) 
(Shahriar Haque et al., 2022). All features were projected to EPSG:3763, and Euclidean distance 
was calculated across mainland Portugal to generate three spatial parameters: distance to major 
substations (Figure 4a), distance to all substations (Figure 4b), and distance to transmission lines 
(Figure 4c).  

To map power plants, we relied on data from DGEG (n=3,017 points and n=591 polygons) 
(DGEG, 2024) and World Resources Institute (n=469 points) (WRI, 2024), excluding all wind and 
solar facilities. WRI data were projected to EPSG:3763, and any locations within 1 km of DGEG-
identified power plants were removed to avoid duplication. Finally, we combined point data from 
DGEG locations (n=214) and remaining WRI locations (n=154) and calculated the Euclidian 
distance from these points across mainland Portugal. Due to DGEG sites mapped also as polygons, 
we also calculated the Euclidian distance from these features (n=33). We then combined both 
Euclidian distance maps by maintaining the lowest distance value found within each pixel to 
produce the distance to power plants parameter (Figure 4d). 



 
Figure 4: All model parameter maps associated with Portugal power grid. Maps show distance from major substations (a), distance from all substations (b), distance from transmis-
sion lines (c), and distance from power plants (d). All distances are measured in meters from features shown in black. All maps have continuous values but are classified for display 
purposes.



 

Accessibility for development 

We used distance to roads as the main proxy for development accessibility, relying once again on 
OSM data (OSM, 2024) to identify these features. Euclidean distance was calculated for two road 
categories: “primary” roads and “all major” roads. For primary roads, we selected all linear 
features with the “fclass” attribute values of either “motorway”, “trunk”, or “primary”, while for 
all major roads, added to the previous selection by including “fclass” attribute values of 
“secondary” and “teritiary”. For both selections the associate “link” features were also included 
(e.g., “motorway link”). After projecting these features to EPSG:3763, we calculated the Euclidian 
distance from each road dataset to produce our final parameter maps; distance from primary roads 
(Figure 5a) and distance from all major roads (Figure 5b). Originally, an often-used parameter in 
RE siting, “distance from railroads” was created and used in the modeling process but later 
removed due to partner feedback indicating a lack railroads in Portugal being used for transporting 
development materials (e.g., wind turbine blades). 

 
Figure 5: All model parameter maps associated with accessibility for development. Maps show distance from primary roads (a) 
and distance from all major roads (b). All distances are measured in meters from features shown in black. All maps have continuous 
values but are classified for display purposes. 



 

Proximity to demand centers 

To assess proximity to demand centers, we focused on population centers by mapping the 
boundaries of major urban areas and cities across Portugal and then calculated the distance from 
these centers. To identify them, we used the Global Human Settlement Layer (GHSL), Degree 
Urban 2025, 1-km resolution raster dataset (JRC, 2025). After projecting and aligning this dataset 
to our modeling environment using a “nearest neighbor” interpolation, we created boundaries for 
just major urban areas by selecting pixels with a value of 30 indicating “urban centers” and then 
grouped contiguous pixels (diagonals included) into major urban areas. This method identified five 
major urban centers: Lisbon, Porto, Coimbra, Braga, and Portimão. To produce boundaries for all 
cities, we followed the same procedure, but this time included pixel values of 23- “dense urban 
cluster”, 22- “semi-dense urban cluster”, and 21- “suburban or per-urban”. Euclidian distances 
were calculated from each set of boundaries to create our final two parameters: distance from major 
urban areas (Figure 6a) and distance from all cities (Figure 6b).  

Avoidance factors 

While RE projects supply power to mainly population centers, these types of power plants, 
especially wind, are often built in areas with low or no population. To represent this phenomenon 
spatially within our model parameters, we relied on a 2020 estimated population density map 
(Meta, 2024). This map estimates the number of people located within a per 30 m2 pixel across the 
world. After selecting only data specific to Portugal, we then projected and aligned these data with 
our modeling environment. We then summed the number of people within each 1-ha pixel to 
produce the population density parameter (Figure 6c).   

 
Figure 6: All model parameter maps associated with proximity to demand and avoidance. Maps show distance from major urban 
areas (a), distance from all cities (b), and population density (c). All distances are measured in meters from features shown in black. 
Population density value is measured by people count per pixel. All maps have continuous values but are classified for display 
purposes. 



 

2.1.6. Training Dataset  

Once all parameter datasets were developed, we then assigned the overlapping parameter pixel 
value for all present and absent locations (sections 2.1.4 and 2.1.5). For both wind and solar, this 
produced twelve parameter values across all locations and provided the foundation for all 
additional model work. 

2.1.7. Selecting Modeling Parameters  

With the training dataset, we followed Murphy et al. (2010) by applying the R (Liaw & Wiener, 
2002; R Core Team, 2021) package rfUtilities (Evans, 2025a; 2025b) to select significant 
parameters. Parameter sets for each final model were selected based on those which produced the 
lowest out-of-bag (OOB) error and lowest class error, as identified by modelSel command within 
rfUtilities. From these selected parameters, we then checked for multi-collinearity and if needed 
removed the collinear variable with the lowest importance value from all parameters before 
rerunning our model selection.  

2.1.8. Random forest probabilistic modeling 

After identifying a parameter set, we then fit each RF probabilistic model by running the ranger 
command within the R package ranger (Wright et al., 2024). Specific to ranger, we set a maximum 
of trees to 501, used all training data with the selected parameter values, and included the 
importance measure of permutation. We then assessed this model fit by first calculating the log 
loss value, ensuring a value below 0.5. We further assess the model fit by transforming the model 
probabilities to a binary outcome using a threshold probability value greater or equal to 0.65 as 
present and less than 0.65 as absent and then compare these derived values with our original 
present/absent RE locations. Using the accuracy command within rfUtilities, we then examined 
several confusion-based metrics such as percent correctly classified (PCC), Cohen’s Kappa, and 
area under the receiver operating curve (AUC/ROC). To assess model performance, we performed 
a Bootstrap approach where the full model is evaluated against numerous Bootstrapped models 
representing different realizations of probabilities. Specifically, we applied the crossValidation 
command within rfUtilities and set this command to have 99 replicated predictions withholding 
10% of data from each replicate. We then quantified error based on average Kappa and OOB error 
metrics associated with these withheld data of each iteration. For all models produced, we used 
these values to overall validate each model and provide comparisons across models. 

2.1.9. Development potential maps 

We produced final development potential (DP) maps by applying the trained Random Forest (RF) 
models to all raster datasets associated with the selected parameters. Each pixel was assigned a 
predicted probability value representing the likelihood of future wind or solar development, 
ranging from 0 (highly unlikely) to 1 (extremely likely). To focus only on areas that are technically 
feasible for development, we excluded all regions identified as unsuitable in the technical criteria 
(Section 2.1.3). Areas with a DP value greater or equal to 0.65 were classified as having high 



 

development potential, following a commonly used threshold in probabilistic modeling (Evans & 
Kiesecker, 2014). 

Initial PV modeling showed varying importance in parameters when modeling small-scale PV 
development (smaller or equal to 10 ha) vs large-scale PV development (greater than 10 ha).  The 
10-hectare breakpoint was based on the median size of solar farms in the dataset and coincides 
with the approximate area required for a 5 MWac utility-scale solar installation (Bolinger & 
Bolinger, 2022). As a result, separate DP maps were created for small- and large-scale PV 
development.  

Additionally, due to high grid saturation within Portugal, two extra models were developed, one 
which removed all substation parameters and a second one that removed all parameters associated 
with the power grid. These alternative models aimed to expand the scope of predicted development 
opportunities, identify drivers of development independent of grid infrastructure and provide 
insights regarding grid expansion to support long-term RE targets. This request resulted in three 
intermediate DP maps which differed only by the initial parameter inputs to derive the model:   

1) all available parameters (All),  
2) exclusion of substation parameters (Substation Dropped), and  
3) exclusion of all parameters referencing the power grid (Power Grid Dropped). 

In total, 9 intermediatory DP maps were produced (3 wind, 3 large-scale PV, and 3 small-scale 
PV), which ultimately led to the development of one wind and two size-dependent PV DP maps. 
The final wind and two size-dependent PV DP maps were created by combing the intermediary 
DP maps from the “All” and “Substations Dropped” models via selecting the highest probability 
per pixel of either DP map. This decision to combine outputs from these two intermediate DP maps 
was based on several factors. First, there was a lack of knowledge in our model parameters 
regarding capacity, and expansion opportunities with any substation. Second, substations are often 
built at, or near, the same time as the wind or solar power plants that are being developed (Ong et 
al., 2013; Cerveira et al., 2021).  Third, while opportunities exist to expand capacity of current 
transmission lines (e.g., reconductoring), the timing on developing new transmission lines to 
support unserved areas can be upwards of 10 years (IEA, 2023) and thus not suitable for inclusion 
in a current DP map. Finally, by not also including the “Power Grid Dropped” DP maps, we 
maintained a potential comparison necessary to identify future grid expansion.    

 

2.2. Development Potential Results  

2.2.1. Wind Development Potential Models 

For wind DP models, we discovered that two parameters consistently had the strongest influence 
across all models: Average mTPI and Wind capacity factor (Table 3). Average mTPI values greater 
than 0.75 showed the highest level of influence for wind DP and was supported by the vast number 
of wind turbines currently found on ridgetops. Conversely negative mTPI values consistently 



 

produced low overall DP. Wind CF values higher than approximately 0.29 (e.g., NPES > 2,500 
hours) showed highest influence on wind DP. Like mTPI, low wind CF values (e.g., NPES <  2,200 
hours) were common in areas associated with low wind DP values.  

Besides having various degrees of importance to the models, the parameters of Distance from All 
Substations, Distance from Transmission Lines, Distance from Major Urban Areas, and Distance 
from Power Plants, had similar effects, with DP values generally decreasing as distance from these 
features increased. For both Distance from All Substations and Distance from Transmission Lines 
parameters, distances up to 5 km and 2 km, respectively, showed strong influences on Wind DP 
values. This influenced decreased rapidly after these distances and continued until each provided 
little influence on Wind DP values past distances of 10 km and 6 km, respectively. The Distance 
from Major Urban Areas parameter influenced Wind DP values consistently up to distance of 60 
km after which the influence decreased greatly until seeing little to no influence past 100 km. The 
Distance from Power Plants showed only a slight influence on DP values to a maximum distance 
of 25 km.  

The remaining selected parameters had low individual influence, with all three showing slight 
increases in DP values as distance increased. All selected parameters showed high variability in 
the level of influence indicating no single parameter alone produced high wind DP values (DP >= 
0.65) but more combinations of parameters. For example, high Wind CF values (NPES > 2500 
hours) and high mTPI values (mTPI > 0.75) almost always resulted in high Wind DP values with 
the remainder of parameters providing further but less dramatic increases in DP values. 

By dropping both substation parameters, the Distance to transmission lines parameter increased in 
predictive power, but remained only one-third as influential as mTPI or wind CF. When dropping 
all power grid parameters, the Distance from major urban areas parameter became a slightly 
stronger predictor, though still over four times less influential than mTPI or wind CF. We also 
discovered that two model parameters (Distance from all major roads and Population density) 
were not selected by any DP models and the parameter Minimum percent slope only slightly 
influenced the model that excluded all power grid parameters. 

All wind DP maps indicated moderate to high development potential in northern and central 
mountainous regions, a large area northeast of Lisbon, and mountainous zones in far southern 
Portugal. Little difference in DP maps was shown across Portugal when running the model with 
or without the substation parameters, although dropping substations resulted in an increase of 
approximately 392 km² in high DP areas. The most notable change occurred when all power grid 
parameters were removed, revealing increased high DP along coastlines and ridgelines lacking 
grid access. The final combined wind DP map (Figure 7a) identifies nearly 2,223 km2 (2.5% or 
PRT) of technically suitable, high wind development potential (DP values >= 0.65; Figure 7b).  

 

 



 

Table 3: Parameter set included for wind development potential (DP) modeling with associated parameter importance values used 
in final models. Importance values are listed for three final models; model derived from using all parameters as input (All), model 
derived when two substation parameters are removed (Substations Dropped), and model derived when all power grid parameters 
are removed (Power Grid Dropped). Parameters ordered from highest to lowest importance values associated with final all pa-
rameter model. Importance values of -1 indicate parameter was not selected to be used in final model. Importance values tagged 
with “---" indicate parameter was removed from original parameter list prior to the parameter selection process included in the 
modeling workflow. 

Parameter Description 

Importance Values for Wind DP Models 

All 
Substations 
Dropped 

Power Grid 
Dropped 

Average multi-scaled topographic position 
index (mTPI) 

0.144 0.159 0.174 

Wind capacity factor (CF) - NEPSv2 0.126 0.145 0.167 

Distance from all substations 0.081 --- --- 

Distance from transmission lines 0.034 0.054 --- 

Distance from major urban areas 0.020 0.033 0.038 

Distance from power plants 0.012 0.021 --- 

Distance from all cities 0.009 0.017 0.019 

Distance from primary roads 0.007 0.011 0.008 

Distance from major substations  0.007 --- --- 

Minimum percent slope  -1 -1 0.012 

Distance from all major roads -1 -1 -1 

Population density -1 -1 -1 

 



 

 
Figure 7: Final development potential (DP) maps for wind energy in Portugal: a) DP values are shown for technically suitable 
lands, ranging from 0 (lowest potential) to 1 (highest potential). A min/max rendering stretch is applied to display the full range of 
values. Technically unsuitable lands are depicted in a reddish light grey, while areas outside Portugal are blurred with semi-
transparent grey. (b) High DP areas (DP ≥ 0.65) highlighted on technically suitable lands only. This threshold identifies regions 
most favorable for future wind energy development. 

2.2.2. Large-scale PV Development Potential Models 

To produce the most accurate large-scale PV DP models, only six parameters were selected out of 
all thirteen (Table 4). Of these six, only two parameters (Solar capacity factor and Distance from 
major urban areas) were not associated with the power grid. In the “All” model, the Distance from 
all substations parameter was the most important one, but only slightly more than Solar capacity 
factor (CF). The highest influence in DP values were found in areas within 2.5 km of any 
substation with a gradual decrease in this influence up to 5 km and becoming negligible beyond 



 

that distance. Solar CF showed a rapid increase in influence going from 4.1 to 4.3 UNITS, with a 
gradual and steady increase thereafter which plateaued at a very high influence from 4.5 and 
higher. There was a clear gap in model influence between these two top parameters and the 
remaining four, although all contributed substantial predictive power. 

DP values were extremely high within 25 km of major urban areas, decreasing slightly out to 50 
km, and providing little additional value beyond that. Interestingly, Distance from power plants 
provided a stronger influence on DP values the further lands were from this feature. Moderate 
influence still occurred close to power plants, but rose sharply in influence up to a distance of 15 
km where a slight but gradual influence continued to occur past this distance. Influence by 
transmission lines held relatively high up to maximum distance of 2.5 km and then fell sharply to 
4 km and had little influence after. Finally, major substations showed strong influence to 10km and 
then more moderate influences decreasing up to roughly 15 km away from which these features 
provided little or no influence.     

By removing both substation parameters, the Distance to transmission lines parameter increased 
in predictive power slightly. However, it had relatively more influence in the model due to it being 
second behind Solar CF. Also noticeable was an increase in the overall number of selected 
parameters for the model to eight, even with two parameters being removed. When removing all 
power grid parameters, Solar CF remained consistent as the most important parameter with 
Distance from major urban areas being a close second, followed by Distance from all cities with 
both showing increases in predictive power as moving closer to these areas. We also discovered 
that two model parameters (Population density and Average aspect ranking) were not selected by 
any large-scale PV DP models and the parameter, Distance from all major roads, only had very 
minimally influencing the model that excluded all power grid parameters.  

All large-scale solar PV DP maps indicated moderate to high development potential across the 
southern third of Portugal and portions of east-central Portugal, where solar CF values are the 
highest. Some differences appeared between models with and without substation parameters, with 
high development potential shifting away from substations and toward transmission lines in the 
south. The most notable change when removing all power grid parameters was the expansion of 
high development areas away from transmission lines and increased focus on areas near roads. The 
final combined large-scale PV DP map (Figure 8a) identifies nearly 13,840 km2 (15.5% or PRT) 
of high development potential (DP values >= 0.65) on technically suitable lands (Figure 8b). 

 

 

 

 

 

 



 

Table 4: Parameter set included for large-scale photovoltaic (PV) solar development potential (DP) modeling with associated 
parameter importance values used in final models. Importance values are listed for three final models; model derived from using 
all parameters as input (All), model derived when two substation parameters are removed (Substations Dropped), and model de-
rived when all power grid parameters are removed (Power Grid Dropped). Parameters ordered from highest to lowest importance 
values associated with final all parameter model. Importance values of -1 indicate parameter was not selected to be used in final 
model. Importance values with “---” indicate parameter was removed from original parameter list prior to the parameter selection 
process included in the modeling workflow. 

Parameter Description 

Importance Values for Large-scale PV DP 
Models 

All 
Substations 
Dropped 

Power Grid 
Dropped 

Distance from all substations 0.107 --- --- 

Solar capacity factor (CF) - PVOUT 0.103 0.090 0.094 

Distance from major urban areas 0.073 0.060 0.078 

Distance from power plants 0.061 0.046 --- 

Distance from transmission lines 0.059 0.073 --- 

Distance from major substations 0.047 --- --- 

Distance from all cities -1 0.045 0.049 

Average percent slope  -1 0.038 0.044 

Distance from primary roads -1 0.030 0.048 

Distance from all major roads -1 -1 0.020 

Population density -1 -1 -1 

Average aspect ranking -1 -1 -1 

 



 

 
Figure 8: Final development potential (DP) maps for large scale PV solar in Portugal: a) DP values are shown for technically 
suitable lands, ranging from 0 (lowest potential) to 1 (highest potential). A min/max rendering stretch is applied to display the full 
range of values. Technically unsuitable lands are depicted in a reddish light grey, while areas outside Portugal are blurred with 
semi-transparent grey. (b) High DP areas (DP ≥ 0.65) highlighted on technically suitable lands only. This threshold identifies 
regions most favorable for future wind energy development. 

 

2.2.3. Small-scale Solar Development Potential Models 

For small-scale solar DP, eleven parameters out of all thirteen were selected to create the best 
model (Table 5). In addition to the number of parameters, the drivers of development for small-
scale solar differed notably from those in the large-scale PV model. For the small-scale solar 
model, the Distance from all substations was the most important parameter and had nearly double 
the predictive power of the next three, which were relatively similar in importance. Besides 



 

Distance from all cities, the power grid parameters related to substations and transmission lines 
comprised the top four drivers. All four parameters strongly influenced development potential 
when sites were close to these features. 

The highest influence in DP values was found in areas within 1 km of any substation, with a rapid 
decrease in this influence moving to 2.5 km away and followed by little or no influence after this 
threshold. Proximity within 2 km of cities also displayed strong influences on the model values, 
with a substantial decrease in influence occurring up to 15 km, from which little to no influence. 
Those areas within 10 km of major substations showed high influence, which decreased rapidly 
approaching 20 km. or transmission lines, only lands within 1 km showed high influence, with a 
sharp decline up to 4 km and negligible effect beyond that. 

Flat lands (up to 4 percent slope) were highly favored for development, but influence dropped 
rapidly as slope increased to 8 percent, with little effect beyond that. Interestingly, among the four 
least influential parameters, two were also selected by the large-scale PV model displaying similar 
trends of influence (Distance from power plants and Distance from major urban areas) with 
differing thresholds: power plants influenced development at distances greater than 25 km, while 
urban area influence peaked within 2 km. Additionally, both accessibility parameters (Distance to 
primary roads and Distance to all major roads), were selected with influences mainly seen within 
1,500 m and 500 m, respectively. Finally and most surprisingly, the small-scale PV solar model 
did not select solar CF as a model input, which was the second highest parameter for large-scale 
PV solar.   

By removing both substation parameters, Distance to transmission lines became more influential, 
ranking second behind Distance from all cities, which also increased in importance. When 
removing all power grid parameters, Distance from all cities remained the most important 
parameter, but now had nearly double the influence on the model than the next closest parameter 
(Average percent slope). Similar to the large-scale solar models, two model parameters 
(Population density and Average aspect ranking) were not selected by any small-scale PV DP 
models, while the Solar CF parameter only very minimally influencing models that excluded 
substations and all power grid parameters. 

All small-scale solar PV DP maps displayed high development potential across Portugal near 
cities. Only slight country-wide changes of high DP were visible across models. High DP values 
initially near cities and substations in the “All” model, transition to lands near cities and 
transmission lines, and finally flatter lands near cities and roads. The final combined small-scale 
PV DP map (Figure 9a) identified 4,843 km2 (5.4% of PRT) of land as having high development 
potential (DP values >= 0.65) across Portugal (Figure 9b). 

 

 

 



 

Table 5: Parameter set included for small-scale photovoltaic (PV) solar development potential (DP) modeling with associated 
parameter importance values used in final models. Importance values are listed for three final models; model derived from using 
all parameters as input (All), model derived when two substation parameters are removed (Substations Dropped), and model de-
rived when all power grid parameters are removed (Power Grid Dropped). Parameters ordered from highest to lowest importance 
values associated with final all parameter model. Importance values of -1 indicate parameter was not selected to be used in final 
model. Importance values with “---” indicate parameter was removed from original parameter list prior to the parameter selection 
process included in the modeling workflow. 

Parameter Description 

Importance Values for Small-scale PV DP 
Models 

All 
Substations 
Dropped 

Power Grid 
Dropped 

Distance from all substations 0.098 --- --- 

Distance from all cities 0.062 0.084 0.103 

Distance from major substations  0.055 --- --- 

Distance from transmission lines 0.053 0.073 --- 

Average percent slope  0.039 0.048 0.060 

Distance from primary roads 0.034 0.039 0.045 

Distance from power plants 0.027 -1 --- 

Distance from major urban areas 0.026 0.034 0.047 

Distance from all major roads 0.023 0.032 0.042 

Solar capacity factor (CF) – PVOUT -1 0.033 0.036 

Average aspect ranking -1 -1 -1 

Population density -1 -1 -1 

 



 

 
Figure 9: Final development potential (DP) maps for small scale PV solar in Portugal: a) DP values are shown for technically 
suitable lands, ranging from 0 (lowest potential) to 1 (highest potential). A min/max rendering stretch is applied to display the full 
range of values. Technically unsuitable lands are depicted in a reddish light grey, while areas outside Portugal are blurred with 
semi-transparent grey. (b) High DP areas (DP ≥ 0.65) highlighted on technically suitable lands only. This threshold identifies 
regions most favorable for future wind energy development. 

 

2.2.4. Combining High Development Potential for Solar in Portugal 

To accommodate further TNC Smart-siting analysis, a final solar high development potential map 
was derived by combining both the large-scale and small-scale high DP maps (Figure 8b and 
Figure 9b). Any pixel identified as having high development potential from either DP map was 
maintained in the final high DP map. This identified 15,594 km2 (17.5% of PRT) of land as having 
high development potential for new ground-based PV solar across Portugal (Figure 10). 



 

 
Figure 10: Final high development potential map for PV solar. 

 

2.2.5. Model Validation 

Overall, all models demonstrated acceptable validation metrics with wind models consistently 
outperforming the solar models (Table 6). Across all models, performance generally decreased as 
parameters were removed from the original set. However, wind models were least affected by these 
removals, since the two most important parameters (mTPI and Wind CF) remained constant 
regardless of the parameter set used by the models. Interestingly, previous PV solar models using 
all parameters that did not model the size classes differently (large-scale and small-scale) showed 
lower overall validation measures than those produced in this final effort which were separated.   



 

Table 6: Validation measures for all 3 models developed (i.e., 1-model development from all parameters, 2-model developed with 
substation parameters removed, 3-model developed with all power grid parameters removed) per technology modeled (i.e., wind, 
large-scale PV solar, and small-scale PV solar). Measures listed: log loss, percent correctly classified (PCC), Cohen’s Kappa, area 
under the receiver operating curve (AUC/ROC), cross-validation (CV) Kappa, and cross-validation (CV) out-of-the-bag (OOB) 
error. 

Measure 
Wind Models 

Large-scale PV Solar 
Models 

Small-scale PV Solar 
Models 

1 2 3 1 2 3 1 2 3 

Log loss 0.0406 0.0497 0.0576 0.1241 0.1454 0.1671 0.1313 0.1605 0.1663 

PPC  99.25 99.02 98.83 98.31 98.68 99.06 97.05 96.01 96.01 

Kappa 0.9849 0.9801 0.9762 0.9601 0.9689 0.9777 0.9400 0.9186 0.9186 

AUC/ROC 0.9916 0.9890 0.9868 0.9880 0.9906 0.9933 0.9669 0.9552 0.9553 

CV Kappa 0.9368 0.9237 0.9013 0.7610 0.6729 0.5823 0.8052 0.7704 0.7360 

CV OOB 0.0315 0.0378 0.0491 0.0910 0.1192 0.1485 0.0983 0.1156 0.1329 

 

2.3. Discussion and Recommendations 

A total of nine intermediatory DP maps were produced (3 wind, 3 large-scale PV, and 3 small-scale 
PV), which were ultimately combined to create one wind and two size-dependent PV DP maps. 
We recommend using the final wind and two-size dependent PV DP maps when planning for future 
impact from either development. These DP maps met both validation and accuracy requirements 
necessary to provide valuable insights on future wind and solar development in Portugal. Even 
though our final maps have a spatial resolution of 100 m, they are mostly recommended to support 
general land use planning at multiple governmental levels and therefore should not be used for site 
specific planning. Also, while DP values range from 0 (unlikely) to 1 (highly likely), small 
differences in values will not differentiate where development may occur. Additionally, our high 
DP threshold of 0.65, while supported by other DP models (Evans & Kiesecker, 2014), could be 
scaled up or down depending on use and extent of an analysis. For example, using a selected 
percentile of high values may be more appropriate within a planning region.  

For simplicity with our Smart Siting approach and due to a lack of knowledge regarding the size 
of future solar PV development, we produced one high DP map for PV solar. However, we still  
see value in providing DP maps for both small and large-scale development. For example, 
municipalities can use both small-scale and large-scale PV DP maps to plan for several small sites, 
a few large sites, or a combination, depending on their capacity goals. 



 

While valid wind and solar models were produced without power grid parameters, careful 
consideration should be applied when using any of these models. The wind DP map produced does 
provide some pointed insights on where to plan for future grid expansion by identifying lands 
highly suitable for development once provided with transmission line access. The solar models on 
the other had do not provide this level of insight more because of the abundance of solar resource 
across Portugal making it more difficult to target certain areas.    

Our analysis revealed key drivers for wind and PV solar development. For wind, ridgetops and 
plateaus landscapes (modeled by mTPI and high wind CFs)  are the primary drivers of wind 
development in Portugal. Power grid parameters influence both wind and solar development, but 
solar, especially small-scale, is much more dependent on grid accessibility due to economic 
factors. Interestingly, both solar models showed stronger influence in development potential 
further away from power plants, likely because most power plants are hydro dams located in 
steeper terrain, which is less suitable for ground-based solar. At a certain distance, however, crops 
relying on reservoir water may provide ample opportunities for solar.  

All models tended to favor proximity to substations, with large substations consistently influencing 
DP values at a lower rate. This suggests that smaller, distributed substations are being built to 
connect wind and solar projects to the grid. This may also indicate that substations are often built 
simultaneously with wind and large-scale solar installations, rather than being established 
beforehand to direct where development occurs. Recognizing this potential timing of development, 
was one of the justifications for combing our DP maps produced from all parameters and the one 
created by dropping the substation parameters. Finally, current development shows a tendency of 
large-scale solar to be found in regions with higher solar CF, whereas small-scale solar is more 
distributed across all of Portugal near all cities.  

Population density was the only parameter not selected by any model, likely due to low variability 
across Portugal, where most areas have very low population density. Additionally, the Aspect 
ranking parameter was not selected by any solar model. Likely the spatial resolution of our analysis 
limited this parameter and would be better suited for more fine-scale and/or site-level siting 
analysis. Lastly, the parameter Distance from all major roads was rarely selected, and the 
parameter Distance from primary roads only marginally influenced models, indicating that land 
accessibility is generally not a limiting factor for development in Portugal. 

Finally, and most importantly, these DP maps should be used in conjunction with mapped 
biodiversity and social values to fully identify those potential win-win scenarios where high 
development potential and low conflict occurs. By showing these areas exist and have potential to 
reach wind and solar targets, planners and regulators can guide developers to these areas for further 
research on potential development. Additionally, developers are likely to encounter less resistance 
in these zones, which can reduce project delays and costs, while focusing efforts on areas with 
proven lower development costs. While our modeling did not account for grid capacity, it is a key 
driver of project costs. Conducting grid capacity assessments in selected win-win areas will further 
support developers in choosing the most economically viable sites. 



 

3. Mapping Environmental and Biodiversity Values   
The coarse-filter/fine-filter approach is a framework in conservation planning and widely adopted 
by TNC and the scientific community in biodiversity assessments across terrestrial and aquatic 
ecosystems (Noss, 1987; Grooves et al., 2003; TNC, 2007; Tingley et al., 2014; Davidson et al., 
2021). The coarse filter targets the conservation of entire ecosystems or habitat types, operating 
under the assumption that by protecting representative examples of these broader ecological 
systems, the majority of species and ecological processes they support will also be conserved 
(Lemelin & Darveau, 2006; TNC, 2007). This includes mapping and prioritizing ecological 
systems such as forests, wetlands, or grasslands using remote sensing, Land Use and Land Cover 
(LULC) data, and ecological classifications. 

In contrast, the fine filter is applied to address the needs of species or ecological features that may 
not be adequately protected through coarse-scale ecosystem representation. These include rare, 
endemic, threatened, or keystone species, as well as critical habitats like breeding sites or 
migratory corridors (Geselbracht et al., 2005; Lemelin & Darveau, 2006). Fine-filter assessments 
often rely on species distribution models, occurrence records, and expert input to ensure that 
conservation strategies are inclusive of biodiversity elements that are spatially restricted or 
ecologically unique. 

Together, these filters form a complementary system: the coarse filter ensures broad ecological 
representation and resilience, while the fine filter provides precision and safeguards for 
irreplaceable biodiversity components. This dual approach enhances the robustness of spatial 
planning and is particularly effective in identifying low-conflict zones for renewable energy 
development, as demonstrated in TNC’s smart siting work across Europe (Sochi et al., 2023; 
Kiesecker et al., 2024). 

3.1. Biodiversity Coarse Filter for Portugal   

The coarse-filter biodiversity map was constructed by integrating three spatially explicit ecological 
parameters (Extent, Connectedness, and Rarity) in order to capture broad-scale patterns of 
biodiversity values across Portugal. 

Extent quantifies the distribution and composition of the LULC types that support biodiversity by 
maintaining essential ecological processes. This layer was primarily derived from the most updated 
LULC map from Portugal (COS2018) (DGT, 2018). However, based on recommendations from 
the expert consultation meetings, the dataset was selectively complemented with CORINE 2018 
LULC map (Copernicus, 2018) to address a specific limitation: the aggregation of “Temporary 
rainfed crops” and “Temporary irrigated crops” into a single class. Experts emphasized that these 
two agricultural systems differ significantly in their ecological characteristics and biodiversity 
value. As a result, this class was disaggregated into two distinct categories to better reflect their 
respective contributions to biodiversity (Figure 11). 



 

Each LULC class was assigned a biodiversity favorability score of  1.0 (favorable), 0.5 (partially 
favorable), or 0.0 (not favorable), based on its capacity to sustain ecological functions. These 
values were gathered and validated during an in person event with experts realized in September 
2024, where we had 35 participants. The entire list of classes from the LULC map and the 
biodiversity values can be found in the supplementary materials. 

 
Figure 11: a) Imagery from google maps for a sample region in Portugal; b) COS2018 map with a single class of "Temporary 
rainfed and irrigated crops”; c) Combination from COS2018 and CORINE2018 with two different classes for temporary crops. 

Connectedness is a landscape-scale measure of how linked natural land cover types are across the 
territory. A formal definition would be: “Connectedness refers to structural links between elements 
of the spatial structure of a landscape and can be described from mappable elements” (Baudry & 
Merriam, 1988). It reflects the degree to which favorable habitats are spatially arranged to support 
ecological processes (e.g., species movement and connectivity). There are several factors that 
influenced on the decision of using connectedness rather than other fragmentation metrics, such 
as: i) aligns with the coarse-filter objective of capturing broad ecological patterns without focusing 
on specific species; ii) it is scale-appropriate for national-level planning, avoiding the scale-
dependence and species-specific assumptions of many fragmentation indices; iii) it emphasizes 
ecological function, particularly movement and connectivity, which are essential for maintaining 
biodiversity and ecosystem services such as pollination and climate adaptation (Brennan et al., 
2021). 



 

In this assessment, connectedness was derived from the Extent layer using a series of moving 
windows to generate a continuous surface (Ritters et al., 1997; 2000). Each pixel was assigned a 
value between 0.0 and 1.0, where 1.0 represents areas embedded within large, uninterrupted 
patches of favorable habitat, and 0.0 indicates isolated areas. 

Rarity identifies areas of high conservation value based on expert consultation. This layer includes 
data on protected areas in Portugal, such as Natura 2000 sites (ICNF, 2024a), which cover both 
Sites of Community Importance and Special Protection Areas. It also incorporates Ramsar sites 
(ICNF, 2024b; RSIS, 2024), the National Network of Protected Areas (RNAP) (ICNF, 2024c), and 
UNESCO Biosphere Reserves (UNESCO, 2024; Palliwoda et al., 2021), including both core and 
buffer zones. Although Important Bird Areas do not have legal status by default (SPEA, 2024), 
they are included due to their recognized ecological relevance. Beyond these layers we also added 
two layers available on the Institute for Nature Conservation and Forests (ICNF) database: i) Areas 
under forestry regime, both total and partial regimes (REFLOA) and ii) Bioenergetic reserves 
(ICNF, 2024c). 

In addition to these areas, two expert recommendations were also adopted. First, a buffer of 500 
meters was applied around all water and wetland classes from the LULC map, based on the 
understanding that these zones are typically covered by riparian vegetation, which plays a key role 
in supporting key biodiversity services for species (e.g., habitat, food, movement corridors). 
Second, a buffer of 500 meters was applied around geosites, which are geologically significant 
areas recognized for their scientific value. These geosites contribute to conservation and land-use 
planning through their ecological importance and integration into national nature protection 
strategies (LNEG, 2025). 

Another suggestion from expert consultation was the development of a Rarity Index (RI) to 
identify which LULC types could be considered rare habitats for species at the national scale (Eq. 
2). The index is based on the relative abundance of each LULC class, excluding artificial surfaces. 
It is calculated as: 

𝑅𝐼 (%) =  ൬
𝐶𝑙𝑎𝑠𝑠 𝑎𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
൰ ∗ 100 (2) 

 

Rare habitats were selected statistically, using the median RI as a threshold. All habitats that had 
RIs under the median value were selected as rare habitats, with the exception of some agricultural 
classes that were excluded from the rare category (temporary crops and pastures associated with 
vineyards, orchards, olive groves, agricultural nurseries, and rice fields). Similar habitat types were 
grouped together to support interpretation and application (Table 7). 

 

 

 



 

 

Table 7: List of groups and respective classes that were considered rare habitats for Portugal, including the total group area (ha) 
and the Rarity Index (RI) (%) 

Group Class Area (ha) RI (%) 
Forests I  36978 0.437 
 Other coniferous forests   
Forests II  18499 0.219 
 Chestnut forests   
Agroforestry  44677 0.528 
 Mixed cork and holm oak   
 Stone pine   
 Mixed classes   
 Other oaks   
 Other species   
Dunes  9711 0.115 
 Interior beaches, dunes and sands   
 Coastal beaches, dunes and sands   
Wetlands  26414 0.312 
 Intertidal zones   
 Saltwater marshes   
 Freshwater marshes   
Bare rock  6172 0.073 
 Bare rock   

 

After all these layers were developed, they were merged into a single conservation dataset to avoid 
double counting, as several overlaps were identified. The rarity layer was assessed for its condition 
based on the degree of land modification from human activities, using the Human Modification 
Index (HMI) (Kennedy et al., 2018; Theobald et al., 2025). The rule used to assign the biodiversity 
values to the Rarity layer was based on the HMI values of each pixel (Figure 12): 

 If the HMI was between 0.0 and 0.1 (inclusive), the biodiversity value is 1.0. 

 If the HMI was greater than 0.1 and up to 0.4, the biodiversity value is 0.85. 

 If the HMI was greater than 0.4 and up to 0.7, the biodiversity value is 0.65. 

 If the HMI was greater than 0.7 and up to 1.0 (inclusive), the biodiversity value is 0.5. 

 

Areas that didn’t belong to the layers mentioned before, were classified with a biodiversity value 
of 0.0. 



 

 
Figure 12: a) Imagery from google satellite for a region inside the Natura 2000 Montesinho/Nogueira area; b) Imagery from google 
open street maps for the same region, highlighting the Bragança regional airport; c) The entire region covered with the Human 
Modification Index from Theobald et al. (2025), where 0 represents habitats with a low modification index and 1 habitats with very 
high modification index; d) The biodiversity values for the rarity layer after reclassifying the Human Modification Index, where 1 
represents habitats with high biodiversity value and 0.5 habitats with low biodiversity value. Pixels with the value of 0 are observed 
only outside of the layers used to create the rarity layer. 

 

3.1.1. Combining the layers from the coarse filter 

The final coarse-filter map was generated by summing the three previously developed layers into 
a composite biodiversity index. This index produces a continuous scale from 0, indicating low 
biodiversity value, to 3, indicating high biodiversity value. To ensure strong representation of 
formally protected areas, important bird areas and other rare LULC classes, all areas from the 
rarity layer were assigned the maximum biodiversity value (3). The resulting map integrates all 
coarse-filter components into a unified index, offering a spatially consistent representation of 
biodiversity importance across the Portuguese landscape at a national level (Figure 13). All the 
datasets used are on Table 8. 



 

 
Figure 13: Map that presents a composite biodiversity index derived from three coarse-filter layers (Extent, Connectedness and 
Rarity). The index is a continuous value and ranges from 0 (low biodiversity value) to 3 (high biodiversity value) 

  

 

 

 



 

Table 8: All datasets used for the Coarse Filter maps in Portugal 

Spatial Dataset Description 
Original 
Resolution 

Type 
Original 
Source 

COS2018 LULC map for Portugal 1ha Vector DGT (2018) 

CORINE2018 LULC map for Pan-
European region 

- Vector Copernicus 
(2018) 

Natura 2000 Protected areas from the 
Natura 2000 network 

- Vector ICNF (2024a) 

Ramsar Sites Important wetlands from 
the Ramsar convention 

- Vector ICNF (2024b) 

RNAP Rede Nacional de Areas 
Protegidas from Portugal 

- Vector ICNF (2024c) 

UNESCO 
Biosphere reserves 

UNESCO Biosphere 
reserves with zones 

- Vector UNESCO 
(2024) 

IBAs Important Bird Areas for 
Portugal 

- Vector SPEA (2024) 

Geossítios Geosites from Portugal 
with a 500m buffer 

- Vector LNEG (2025) 

Bioenergetic Zones Bioenergetic Zones for 
Portugal 

- Vector ICNF (2024c) 

Areas under 
forestry regime 

Areas under forestry 
regime (REFLOA) 

- Vector ICNF (2024c) 

HMI Human Modification Index 300m Raster Theobald et al. 
(2025) 

  



 

3.2. Biodiversity Fine Filter for Portugal   

The fine-filter biodiversity map was developed aiming to capture the information of 3 major 
animal groups: Birds, Bats and Other Mammals (which we will refer only as Mammals in this 
report). Two major datasets were used for each group to derive sensitivity maps used in the fine 
filter, the first one we are naming Atlas data and the second one is the Area of Habitats. 

The Atlas data is based on national research done by institutions from the environmental protection 
area. The Portuguese Society for the Study of Birds (SPEA, BirdLife’s partner in Portugal) 
provided the dataset related to the III Atlas of Breeding Birds from Portugal (SPEA, 2025) and the 
Red Book of Birds from Portugal (Almeida et al., 2022). The first represents the current 
distribution and abundance of breeding bird species across mainland Portugal and the autonomous 
regions. It also tracks changes over the past 15 years and has a resolution of 10x10km. This dataset 
was provided under a non-disclosure agreement, so we will not be able to share specific data for 
certain bird species. The second represents the extinction risk of bird species in mainland Portugal 
using IUCN criteria. It goes beyond listing threatened species by providing detailed information 
on their distribution, population size, ecological needs, and the pressures they face. The goal is to 
support informed decision-making for bird conservation and management. 

The Atlas data for Bats and Mammals was obtained directly via the Red Book of Mammals for 
Portugal (Mathias et al., 2023), which is a comprehensive assessment of the extinction risk facing 
both terrestrial and marine mammal species in mainland Portugal. It evaluates 82 species using the 
criteria of the IUCN criteria and has also a resolution of 10x10km. For this project, we just 
considered distribution and occurrence records from 2005-2021, since this publication also brings 
information on records before 2005. 

In addition to the two Atlas datasets, several complementary sources were incorporated into the 
analysis (Table 9Error! Reference source not found.). These datasets served as supplementary 
information, enhancing the species occurrence records derived from the Atlas data (Figure 14). 
Importantly, only species classified as Vulnerable, Endangered, or Critically Endangered were 
included in the analysis (All the species and the IUCN status considered are in the supplementary 
material of this document). However, two exceptions were made: 

 The bird Bubo bubo (Eurasian Eagle-Owl), although listed as Near Threatened, was 
highlighted by SPEA as a species of national conservation concern due to its high 
sensitivity to various types of energy infrastructure (Rubolini et al., 2001; Sergio et al., 
2004; Torre et al., 2025). 

 The mammal Ursus arctos (Brown Bear), categorized as Regionally Extinct in Portugal for 
nearly two centuries, was recently observed in northern Portugal. This sighting is likely 
linked to population growth and habitat expansion in neighboring Spain (Gregório et al., 
2020). For the purposes of this analysis, the species was treated as Critically Endangered. 

 



 

Table 9: All datasets used for the Fine Filter maps in Portugal 

Spatial Dataset Description 
Original 
Resolution 

Type Original Source 

Red Book of Birds for 
Portugal 

IUCN status for birds 
in Portugal 

- .pdf Almeida et al. 
(2022) 

III Atlas of Breeding 
Birds of Portugal 

Occurrence data for 
birds in Portugal 

10x10 Km Vector SPEA (2025) 

Red Book of 
Mammals for 
Portugal 

IUCN status for 
Mammals in Portugal 

- .pdf Mathias et al. (2023) 

Eurasian eagle-owl 
additional 
information 

Nesting sites and 
complementary 
occurrence data 

10x10 Km 

2x2 Km 

Vector SPEA, 2024 
(Personal 
communication) 

Black Vulture 
additional 
information 

Complementary 
occurrence data 

10x10 Km Vector LIFE Aegypius 
Return (2024) 

Bonelli Eagle 
additional 
information 

Complementary 
occurrence data 

10x10 Km  Vector SPEA, 2024 
(Personal 
communication) 

Montagu's harrier 
additional 
information 

Complementary 
occurrence data 

10x10 Km  .pdf Gameiro et al. 
(2023) 

National wolf census 
(2019-2021) 

Complementary 
occurrence data 

10x10 Km  .pdf Pimenta et al. (2023) 

Conservation of Key 
Underground sites: 
the database 

Bat shelters for 
Portugal 

Points .pdf Eurobats (2025) 

Area of Habitats Occurrence data for all 
groups in Portugal 

100m Raster Lumbierres et al. 
(2022) 

 



 

 
Figure 14: a) Dataset for the Bird X obtained with SPEA; b) Dataset obtained with a partner for the Bird X; c) Combined datasets 
used in our fine filter approach 

While the Atlas data provided valuable insights, its relatively coarse resolution introduced a risk 
of overgeneralizing the actual areas where species may occur. To address this limitation and 
achieve a more precise representation of species distributions and habitat suitability, we 
incorporated the Area of Habitat (AOH) dataset into our analysis (Lumbierres et al., 2022). AOH 
represents the portion of a species’ geographic range that contains suitable habitat conditions for 
its survival. Unlike traditional range maps, which often overestimate species presence, AOH maps 
refine these estimates by excluding areas deemed unsuitable based on habitat type and elevation 
preferences. 

The AOH dataset offers a high spatial resolution of 100 meters and includes over 15,000 terrestrial 
bird and mammal species. In our analysis, all species listed in the supplementary materials were 
covered by AOH data, with the exception of two bird that were considered marine species (Gulosus 
aristotelis and Uria aalge). Within this project, AOH serves as a valuable complement to the Atlas 
data, providing a finer-scale, habitat-specific perspective that enhances the accuracy sensitivity 
maps. In this project, we are considering a total of 85 species (62 birds, 7 bats and 16 other 
mammals). 

To integrate the AOH data with the Atlas datasets, we followed the methodology recommended in 
the AVISTEP Guide, developed by BirdLife International (Serratosa and Allinson, 2022). This 
approach involved spatially intersecting the high-resolution AOH maps with the coarser-resolution 
Atlas data to refine species distribution layers and improve ecological relevance. For each species, 
we generated a composite raster with values ranging from 0 to 3, representing different levels of 
spatial agreement between the two datasets: 

0: Areas with neither national-level observations (Atlas) nor modeled suitable habitat 
(AOH). 

1: Areas modeled as suitable habitat by AOH but lacking Atlas observations. 

2: Areas with Atlas observations but not modeled as suitable habitat by AOH. 

3: Areas where both Atlas observations and AOH-modeled habitat overlap. 



 

This classification allowed us to prioritize areas with the strongest evidence of species presence 
(value 3), while still incorporating areas supported by only one dataset (values 1 and 2) at a lower 
confidence level (Figure 15). 

 
Figure 15: a) Area of Habitats data only; b) Atlas data only; c) Overlap between Area of Habitats and At-las data for one specie 
and the values assigned to each combination 

At this stage, we had a combined spatial dataset for each species, integrating both Atlas 
observations and AOH-modeled habitat suitability. To generate the final sensitivity maps, we 
applied a weighting system based on each species’ conservation status. Following the IUCN Red 
List categories, we assigned numerical values to each status (Table 10), allowing us to reflect the 
relative conservation importance of each species in the analysis (Serratosa & Allinson, 2022; 
Guilherme et al., 2023). These weights were then multiplied by the combined raster values derived 
from the previous step (ranging from 0 to 3), which represented the spatial agreement between 
Atlas and AOH data. This process was repeated for all species individually. Finally, the resulting 
weighted rasters were summed and normalized within each taxonomic group (birds, bats, and 
mammals), producing group-specific sensitivity maps that emphasize areas of high conservation 
concern while accounting for both habitat suitability and national occurrence records.  



 

Table 10: IUCN Conservation status and the respective numerical values associated with each one of them. 

Conservation Status Assigned Value 

LC (Least Concern) 0.2 

NT (Near Threatened) 0.4 

VU (Vulnerable) 0.6 

EN (Endangered) 0.8 

CR (Critically Endangered) 1.0 

 

To produce a unified biodiversity sensitivity map, we combined the group-specific sensitivity 
layers (birds, bats, and mammals) using a maximum value approach. This method, based on the 
precautionary principle, ensures that the final map reflects the highest level of sensitivity observed 
across any of the three taxonomic groups at each spatial location. By applying a pixel-wise 
maximum operation, we prioritized the most restrictive conservation signal, thereby capturing the 
worst-case scenario for biodiversity impact. For example, if a given location had sensitivity scores 
of 0.6 for birds, 0.4 for bats, and 0.5 for mammals, the final sensitivity value assigned to that 
location would be 0.6.  

The resulting sensitivity map ranges from 0 to 1, where 0 represents areas of low biodiversity 
conflict (e.g., locations with minimal overlap between species of conservation concern and suitable 
habitats) and 1 represents areas of high biodiversity conflict (e.g., where multiple species with 
elevated conservation status are likely to occur in suitable habitats) (Figure 16).  



 

  

Figure 16: Sensitivity maps and scale ranging from 0 (low biodiversity conflict) to 1 (high biodiversity conflict) for a) Birds; b) 
Bats; c) Other Mammals and d) Combined species. 

 

3.3. Defining low conflict sites based on the coarse filter/fine filter 
combination 

To identify areas of low biodiversity conflict suitable for renewable energy development, we 
combined the outputs of the coarse and fine filters using a structured, threshold-based method. 
Each filter was first analysed separately using statistical tools such as boxplots, distribution curves, 
quantiles, means, and medians. These helped us understand how the data was distributed and 
allowed us to build a continuous conflict scale. We then interpreted these statistical patterns 
through an ecological lens to ensure that the resulting classifications reflected real-world 
biodiversity priorities and supported practical spatial planning. 

As a next step, we focused on the quantiles and median values to define initial thresholds (all the 
statistical values and distributions are presented in the supplementary material). We then assessed 
what these statistical ranges meant in ecological terms (e.g., such as rare species presence, habitat 
quality, LULC classes and presence of protected areas). Our goal was to create conflict classes that 
not only made sense statistically but also grouped the territory into ecologically meaningful and 
spatially coherent regions.  

For the coarse filter, we analysed the distribution of the final raster values both with and without 
the inclusion of areas assigned that had a biodiversity value of 3. These values were manually 



 

attributed to protected areas and other rare habitats on the rarity layer in order to reflect their 
elevated conservation importance. However, their inclusion skewed the distribution toward the 
upper end, causing the third quantile to align with the maximum value. To address this, we 
excluded the value-3 areas (representing approximately 38% of Portugal’s territory) and treated 
the classification as a two-part problem. We then used the median value (rounded up) to define the 
first threshold, which corresponded to a value of 1 on the coarse filter map and is aligned with 
ecologically meaningful criteria described in Table 11. The second threshold was defined similarly, 
with values equal to or greater than 2 also supported by strong ecological justification. This 
approach allowed us to create conflict classes that were both statistically grounded and 
ecologically relevant. 

Table 11: Conflict categorization of coarse filter areas in Portugal based on Biodiversity and Statistical considerations 

Conflict Category for the Coarse Filter Description 

Low Conflict (0 ≤ x < 1) 

Total area: 34748 Km2 

Approximately 39.0% of Portugal 
 

Areas where the LULC is not favourable or only 
partially favourable to biodiversity, with poor 
connectedness, no rare habitats, and outside protected 
areas. 

Moderate Conflict (1 ≤ x < 2) 

Total area: 20200 Km2 

Approximately 22.6% of Portugal 
 

Areas with mixed characteristics: Favourable to 
biodiversity values with low connectedness and no 
Rare habitats; Partially favourable to biodiversity 
with medium connectedness and no Rare habitats; 
Not favourable to biodiversity with medium or low 
connectedness and the possibility of degraded rare 
habitats. All cases are outside of protected areas. 

High Conflict (2 ≤ x ≤ 3) 

Total area: 34153 Km2 

Approximately 38.4% of Portugal 
 

Areas with favourable or partially favourable LULC 
for biodiversity, high values of connectedness, and/or 
with the presence of rare habitats and/or close to 
water resources. All values of 3’s fall within areas 
from the rarity layer (which includes all protected 
areas), regardless of other factors. 

 

The approach for the fine filter was more straightforward, as species were already weighted 
according to their IUCN conservation status. This meant that species of higher concern (e.g., 
Critically Endangered) had a greater influence on the final sensitivity values. As a result, these 
species were less likely to appear in the lower end of the fine filter distribution, since their higher 



 

weights naturally elevated the values of the areas where they occurred. Based on this, we used the 
rounded-up quantile values to define the conflict categories. We also examined the presence of 
modelled and observed habitats for these species within each class, ensuring that the classification 
reflected the goal of prioritizing protection for the most threatened species. Despite the coarse 
resolution of the Atlas data, we observed only minimal overlap between critically endangered 
species and areas classified as low conflict, which supports the reliability of the classification in 
identifying zones of lower ecological risk (Table 12). 

Table 12: Conflict categorization of fine filter areas in Portugal based on Biodiversity and Statistical considerations 

Conflict Category for the fine filter Description 

Low Conflict (0 ≤ x < 0.3) 

Total area: 24732 Km2 

Approximately 27.8% of Portugal 
 

These areas show a low likelihood of occurrence for 
species of highest conservation concern (IUCN status 
= CR), with minimum overlap (1%) between 
confirmed and modelled habitats of critically 
endangered birds, bats, or mammals. 

Moderate Conflict (0.3 ≤ x < 0.5) 

Total area: 42207 Km2 

Approximately 47.3% of Portugal 

 
 

These areas show a moderate likelihood of occurrence 
for species of highest conservation concern (IUCN 
status = CR), with moderate overlap (19%) between 
confirmed and modelled habitats of critically 
endangered birds, bats, or mammals. 

High Conflict (0.5 ≤ x ≤ 1.0) 

Total area: 22161 Km2 

Approximately 24.9% of Portugal 

These areas show a high likelihood of occurrence for 
species of highest conservation concern (IUCN status 
= CR), with high overlap (80%) between confirmed 
and modelled habitats of critically endangered birds, 
bats, or mammals. 

 

Once the thresholds for both the coarse and fine filters were defined, we merged them to produce 
a combined biodiversity conflict classification. This was done by combining the categorical values 
of each filter by creating a matrix of all possible combinations, resulting in nine distinct classes. 
Each combination was assigned a unique raster ID and grouped into five final conflict categories: 
Low, Mod-Low, Moderate, Mod-High, and High (Table 13 and Table 14). 

 



 

Table 13: Combined biodiversity conflict categories in Portugal using the coarse and fine filter categories with area estimates 

Conflict category Coarse Filter 
(Ecosystem filter) 

Fine Filter 
(Species filter) 

Area (Km2) 

Low Low Low 12073 

Mod-low Mod Low 5672 

Mod Low Mod 17136 

Mod Mod Mod 10171 

Mod-High Low High 5538 

Mod-High Mod High 4356 

High High Low 6987 

High High Mod 14899 

High High High 12676 

 

The spatial distribution of these combined conflict categories can be visualized (Figure 17), which 
overlays the coarse filter, fine filter, and the resulting integrated classification. This visualization 
allows for a clear comparison between ecosystem-level and species-level sensitivities, and 
highlights areas of alignment and divergence between the two approaches. 

This integrated classification provides a robust framework for spatial planning, balancing 
statistical rigor with ecological relevance. It supports transparent decision-making by clearly 
identifying areas of low conflict while acknowledging zones that require caution or further 
ecological review. The map and classification system are designed to be adaptable, allowing for 
future refinement as new data becomes available or as planning priorities evolve. 

While the current biodiversity conflict maps do not differentiate between specific renewable 
energy technologies (e.g., wind vs. solar), this was a decision based on the scope, available data, 
and timeline of the project. The team did not have access to species-specific interaction data that 
would allow the development of separate biodiversity layers tailored to individual technologies, 
particularly within the Portuguese context. Additionally, the datasets provided lacked parameters 
linking species to specific types of infrastructure impacts, such as turbine collision risk, habitat 
avoidance due to turbine noise or electrocution on transmission lines.  

 



 

Table 14: Combined biodiversity conflict categories descriptions and summed area estimates 

Conflict Category for 
the combined filter 

Description 

Low Conflict 

Total area: 12073 Km2 

Approximately 13.5% 
of Portugal  
 

Areas where both filters agree on minimal biodiversity sensitivity, making 
them strong candidates for renewable energy development with reduced 
ecological risk. These areas are typically characterized by low species 
presence, poor habitat connectivity, and absence of rare or protected 
habitats. 

Moderate-Low 
Conflict 

Total area: 5672 Km2 

Approximately 6.4% of 
Portugal 

Areas where ecosystem-level sensitivity is moderate, but species-level 
sensitivity remains low. These landscapes may support broader ecological 
functions but do not host species of high conservation concern. These areas 
are primarily located in Alentejo, particularly in the western part of Alto 
Alentejo and Alentejo Litoral, and may be suitable for development with 
minimal ecological risk, provided that appropriate safeguards are in place. 

Moderate Conflict 

Total area: 27308 Km2 

Approximately 30.6% 
of Portugal 
 

Areas where species of conservation interest are moderately present, and 
ecosystem-level sensitivity is also evident but not dominant. While not 
classified as critical, they warrant careful planning and ecological review. 

Moderate-High 
Conflict 

Total area: 9894 Km2 

Approximately 11.1% 
of Portugal  

Areas with high species-level sensitivity that are not flagged as ecologically 
critical by the coarse filter. These zones often lie adjacent to protected areas 
and may serve as important corridors or buffer habitats, supporting species 
movement and ecological connectivity. Their elevated fine-filter values 
indicate the presence of sensitive or threatened species, making them 
ecologically significant despite moderate or low ecosystem-level indicators. 
These areas require careful consideration in planning to avoid unintended 
impacts on biodiversity. 

High Conflict  

Total area: 34153 Km2 

Approximately 38.4% 
of Portugal 

Areas with elevated conservation value as identified by the coarse filter, 
regardless of species-level sensitivity. These zones include protected areas, 
rare habitats, and landscapes with high ecological connectivity, all of which 
are essential for maintaining ecosystem integrity. Due to their critical role 
in biodiversity conservation, development in these areas is strongly 
discouraged. 



 

 

 
Figure 17: Biodiversity conflict classification maps for Renewable Energy siting in Portugal, considering a) Conflict categories 
derived from the Coarse Filter (ecosystem-level assessment); b) Conflict categories derived from the Fine Filter (species-level 
assessment) and c) Combined conflict classification integrating both filters to identify zones of ecological sensitivity 

Instead, the biodiversity layers were designed to reflect general ecological sensitivity, capturing 
potential impacts across multiple phases of renewable energy development, including habitat loss, 
land use change, and fragmentation. This approach ensures broad applicability while maintaining 
ecological relevance. That said, the development of technology-specific biodiversity layers 
remains a promising direction for future refinement. Should more detailed ecological data become 
available, especially regarding species’ behavioural or spatial responses to different technologies, 
this framework could be expanded to support more targeted siting decisions. However, such 
refinements fall outside the scope of the current study and would require additional data collection 
and modelling efforts. 

  



 

4. Social Values Mapping Approach 
Within the social values mapping component of TNC’s “smart siting” project for Portugal, three 
primary data layers are used: 

I. Viewsheds: A visibility analysis based on landscape values derived from social media; 
II. Social-cultural values: A merged binary layer of important cultural and archaeological sites 

identified by national experts. 
III. Coastal sensitive areas: A buffer zone extending 2 km inland from the shoreline, including 

all nearby islands, to represent areas sensitive to landscape and coastal dynamics. 

 

All three layers serve as the coarse-filter for social values. However, we encourage decision-
makers and practitioners to use this information strategically to identify areas with concentrated 
social value, landscape sensitivity, and potential conflict, and to effectively target community 
engagement and public consultations at the local scale. All analyses conducted in this chapter used 
R version 4.4.1 (R Core Team, 2021). 

 

4.1. Viewsheds 

We conducted a visibility analysis based on viewpoints defined by social-media derived Landscape 
Values (LV). Mapping LV is one method for integrating nature’s contributions to people into spatial 
planning and identifying sensitive areas where land-use change may affect socially meaningful 
places (Gobster et al., 2007). These values are often linked to the landscape's aesthetic appeal, its 
importance for recreation or tourism, and its contribution to well-being (Brown & Raymond, 
2007). Traditional methods to assessing these values include in-person surveys, focus group 
discussions, participatory mapping, or valuation studies. However, these are typically limited to 
local scales and can be resource-intensive, which restricts their scalability and broader relevance. 
Recent studies have leveraged georeferenced social media content as proxies for in situ aesthetic 
and recreational landscape values (Dunkel 2015, Zhang et al., 2022). This information can provide 
insights into landscapes where people attribute a relatively higher social importance, and how 
intensively they are visited or perceived as meaningful (Casalegno et al., 2013). Specifically, 
photo-sharing platforms like Flickr provide spatially explicit data across a large scale that reflect 
individual engagement with landscapes (Wood et al., 2013; Kim et al. 2019), including additional 
information such as captions or hashtags that convey personal meaning, emotional connection, or 
recreational use. 

In geography and landscape planning, a viewshed refers to the set of locations within the line of 
sight from a specific vantage point, constrained by landform and other potential visual barriers. 
The viewshed analysis involves interpolating a straight line between an observer point and every 
other cell in a Digital Elevation Model (DEM) or in a Digital Surface Model (DSM), then 



 

comparing the elevation of intervening cells to determine whether they obstruct the line of sight. 
Each cell is classified as visible or not based on this test, producing a binary raster surface 
(commonly referred as a visibility map), where visible cells are coded as one and non-visible cells 
as zero (Wheatley, 2022). Accordingly, we produced binary rasters of visibility for each 
observation point considered in our analysis. Unlike conventional viewshed analyses anchored to 
physical infrastructure or fixed observation sites, our approach derives viewpoints directly from 
the spatial distribution of socially perceived landscape value. This enables the visibility analysis 
to focus on locations of touristic, cultural, and aesthetic significance rather than arbitrary or purely 
physical features. 

The use of social media data for mapping cultural ecosystem services and landscape value has 
gained increasing traction in recent years (Sonter et al., 2016; Richards et al., 2018; Kim et al. 
2019). Across diverse disciplines, several studies have also used visibility modelling and viewshed 
analyses for assessments of the impact of visibility and visual quality on potential land use change 
and development (Poudyal et al., 2010; Swetnam et al., 2017; Inglis et al., 2022; Dai et al., 2023; 
Lehto et al. 2024). While our work contributes to this emerging field, a growing number of studies 
have begun integrating social media data with viewshed analysis or other spatial distribution 
methods (Van Berkel et al., 2018; Wilson et al., 2019; Fox et al., 2022; Zhang et al., 2022). 
However, our contribution is distinct in that it applies to this integration within the context of 
renewable energy, specifically wind energy development, where it addresses a critical social 
conflict (i.e., landscape aesthetics and visual impacts) that continues to shape discourse and 
decision-making in the field. 

4.1.1. Landscape value raster 

First, we created a LV dataset Portugal that captures patterns of perceived value and benefits for a 
range of characteristics (e.g., scenic, cultural, recreational, tourism) throughout the country. The 
acquisition of geotagged social media content from Flickr was undertaken to construct a spatial 
proxy for LV across mainland Portugal, closely following and adapting the methodological 
framework of (van Zanten et al. 2016). Concentrations of filtered social media content serve as a 
quantitative, spatial indicator of the aesthetic and recreational value that people attribute to 
different landscape. We assume LV increases as more people post, photograph, and share 
information about a given area. This dataset was then used to identify key viewpoints (medium 
and high LV) for running viewshed analyses. As a relatively novel approach, we paired open access 
social media data (LV dataset) with a viewshed analysis, thereby helping to evaluate the potential 
visual impact of renewable energy development on socially valued landscapes. 

Our analysis focused on mainland Portugal, which was identified using a Portugal boundary map 
(DGT, 2023) and refined by more accurate coastline representation (OSM, 2024). To ensure 
systematic coverage and minimize radial overlap, a diamond pattern sampling grid was generated, 
providing evenly distributed centroid locations (Figure 18a). We used a bounding box search radius 
and post-query filtering with a 5 km buffer to restrict photos to the relevant area and maximize 
area coverage (Figure 18b). These centroids were used as input for programmatic queries to 



 

Flickr’s REST API via the ‘FlickrAPI’ R package. For each grid point, the API was queried for up 
to ten paginated result sets within a 5 km radius, retrieving comprehensive metadata including 
upload and capture dates, user ID, geographic coordinates, free text tags, titles, and thumbnail 
URLs. Returned coordinates were subject to post query spatial filtering to guarantee that all points 
lay within their intended radial buffers. 

 
Figure 18: Spatial grids used for maximizing coverage, querying the FlickR data, and rasterizing filtered landscape value: a) 5 km 
diamond grid covering the entire study area, showing the point locations used for searching Flickr data. b) Example of queried 
Flickr photos within a 5 km radius around each grid point, illustrating how geotagged images are collected for landscape value 
analysis. c) 1-km² fishnet grid used for spatial joining and de-duplication of Flickr uploads, enabling the creation of a raster layer 
representing landscape value density. 

Content filtering was performed to retain photographs indicative of recreation and visual-aesthetic 
dimensions of cultural ecosystem services. The multilingual keyword filtering system included a 
lexicon of five languages (Portuguese, English, Spanish, German and Italian). This system was 
organized into three tiers: first, retaining uploads with tags categorized as “unambiguous cultural 
services”; second, selecting uploads containing keywords identified as “ambiguous cultural 
services”; and third, retaining these second-tier uploads only if their tags also included terms 
classified as “generic landscape features” (Figure 19). In other words, the filtering logic retained 
any photograph whose metadata matched at least one “unambiguous” term, or a combination of 
one “generic” and one “ambiguous” term. 

In addition to sub setting the matched terms, the filtering process preserved the original language 
of each match for subsequent analysis of linguistic contributions to coverage (Figure 20). The 
tiered system of keywords considered in this analysis can be found on the supplementary materials. 
Filtered datasets from each language were then merged and de-duplicated to mitigate oversampling 
by prolific users; specifically, only one upload per unique user per 1 km² cell was retained. 

 



 

 
Figure 19: Schematic diagram from van Zanten et al. 2016 representing the keyword filtering approach for FlickR data. 

 

 
Figure 20: Contribution of each language (Portuguese, English, Spanish, German and Italian) considered in the keyword filtering 
system. Bar plot on the left represents the frequency of unique cells per language that were filtered and retained per the given rule 
(content retained whose metadata matched at least one “unambiguous” term – “U”, a combination of one “generic” and one 
“ambiguous” term – “GA”, and those that met both rules – “U+GA”). 

All retained points were snapped to a national 1 km² grid to harmonize spatial resolution (Figure 
18c) before being rasterized to count the number of unique uploads per cell. This produced a 
national map of Flickr upload density, which serves as a proxy for perceived “landscape value” 
(Figure 21). This process yielded two principal datasets: one filtered using only English and 
Portuguese keywords, and another using the full set of five languages. Our final layer represents 
the analysis that incorporates all five languages. 



 

 
Figure 21: Illustrative example (zoomed in area in Portugal) of the “landscape value” raster layer generated from filtered FlickR 
data, representing a national map of Flickr upload density i.e., the number of unique uploads per cell. 

Results for the Landscape Value raster: 

The querying procedure returned metadata for 3,564 grid centroids, with nonresponse occurring at 
fewer than 4 % of points. Using the -two language filter, 47,857 photographs were retained- after 
keyword screening, while applying the five language filter increased this total to 52,495. These 
photographs collectively covered approximately 6 % of Portugal’s 1 km² cells. The linguistic 
composition of retained social media content was dominated by English and Portuguese, while 
Spanish, German, and Italian contributed additional- but geographically complementary coverage. 
Deduplication reduced the two language dataset by ~76 % to 11,084 unique uploads, and the -five 
language- dataset to 12,135 unique uploads concentrated within 5,655 cells (Figure 22).  

In the final raster dataset, the most intensively represented cell contained 95 unique uploads, while 
the mean and median across occupied cells were approximately 2.1 and 1 photo, respectively. This 
raster serves as the foundation for mapping and quantifying the spatial distribution of social media-
derived landscape values in our analysis, providing a robust proxy for public perception of 
landscape value across Portugal. 

The final raster was cropped and masked to match the extent of mainland Portugal. Cells were then 
classified using the head/tail breaks method, a recommended approach for data with a heavy-tailed 
distribution (Jiang, 2013), which is common in human activity and social media datasets (Ross & 
Jones, 2015). This classification resulted in three bins (Figure 23): low (1 to 6 uploads), medium 
(7 to 13 uploads), and high (greater or equal than 14 uploads). 



 

 
Figure 22: Frequency distribution of the count of FlickR uploads per cell, with a range between 0-95. 

 
Figure 23: Landscape value raster with 1km2 cells binned into low, medium, and high value, using a head/tail breaks method of 
classification. Only cells with medium or high landscape value were considered in our viewshed analysis. 

 



 

4.1.2. Viewshed analysis 

We used viewshed analysis to identify areas of visual exposure from landscapes valued for their 
cultural, touristic, and aesthetic significance across mainland Portugal. This was based on a 
national-scale raster of LV derived from geotagged Flickr uploads. Specifically, we examined 
where renewable energy development, particularly in the context of wind energy, may be most 
visible and potentially contentious. This involved the combination of our LV layer with a viewshed 
analysis using the viewscape R package (Yang et al., 2024) (Figure 24). All spatial datasets. 
including the AW3D30 DSM, the LV raster, and administrative boundaries were reprojected to 
EPSG:3763 to ensure consistency. 

From the LV raster, we selected cells with medium (7–13 photos) and high (14–95 photos) 
landscape value, representing 3.2% and 1.9% of the raster area, or 182 and 108 cells, respectively. 
These cells were converted to point features to serve as observer locations for viewshed modeling 
(Figure 25). Our sets of cumulative viewsheds were stratified by LV bin and assigned buffer 
distances corresponding to different sensitivity scenarios. Following the ‘viewscape’ package 
requirements for computing viewsheds, we also included the DSM and an observer height offset 
of 1.6 meters to simulate human eye level. 

 
Figure 24: Workflow, specifying data inputs, for the viewshed analysis considering medium and high view-points (n=182, 108) at 
a national scale. 

We considered visibility zones or maximum viewing distance typologies from existing literature 
on visual impact assessments and viewsheds (Palmer, 2022a). For each set (medium and high LV) 
of viewpoints, we generated binary viewshed rasters using a DSM under two visibility buffer 
scenarios (Takaku et al., 2021). These buffers were applied uniformly across terrain, while 



 

recognizing that actual visibility is influenced by topography, land cover, and atmospheric 
conditions. 

The rationale for selecting buffer distances for our viewshed modeling primarily relied on wind 
energy literature, due to the limited availability of standardized methods for solar development. 
The decision to use wind-based literature was made due to the absence of standardized solar 
visibility zones and the analogous vertical prominence of wind infrastructure in open landscapes. 
Moreover, while solar visibility assessments often focus on reflectance and a hyper-local landscape 
context (Florio et al., 2016; Sullivan et al., 2016), wind energy visual impact assessments offer 
robust frameworks for spatial visibility zones (Fischer & Roth, 2021). 

A comprehensive review on distance zones and visibility exposure for visual impact assessments 
outlines five concentric distance zones based on visual prominence and perceptual thresholds for 
wind turbines, particularly considering the GE 5.3–158 model (Palmer, 2022a). These zones range 
from:  

(1) Immediate Foreground (0.0 to 0.8 km), where turbines dominate the view and auditory 
presence is notable,  

(2) Foreground (0.8 to 3.2 km), where turbines remain visually prominent and attract at-
tention,  

(3) Near-Midground (3.2 to 8.1 km), where multiple turbines are perceived as a cohesive 
visual unit,  

(4) Far-Midground (8.1 to 16.1 km), where turbines become subordinate to the overall 
project footprint, and  

(5) Background (16.1 to 32.2 km), where turbines are generally minimally perceptible 
within the broader landscape. 

For this study, following methodology on uniform distance decay effect (Fischer & Roth, 2021), 
we adopted two buffer distances aligned with the Near-Midground and Far-Midground zones 
(Table 15): 

 

 3 km buffer: reflects “high-sensitivity” zones, where turbine movement and form retain 
strong visual prominence (Breuer, 2001) 

 10 km buffer: a “low sensitivity” radius that captures broader landscape visibility and the 
collective perception of turbine arrays, consistent with Fischer & Roth (2020) 

 

While our buffer thresholds reflect general distance-based typologies, it is important to note that 
visual impact is also shaped by factors such as turbine exposure, model type, landscape context, 
and the number of visible turbines (Palmer et al., 2022b). As such, we recommend that practitioners 
refine viewshed parameters when downscaling the analysis to specific sites, particularly where 
visual impact is a key concern or where utility-scale turbine siting may substantially amplify 
perceptual effects. 



 

 

 
Figure 25: Viewpoints derived from the centroids of medium and high landscape value raster cells for Por-tugal. 

Table 15: Buffer distance considered in viewshed analysis alongside rationale for selection. 

Buffer 
Distance  

Sensitivity 
Level 

Corresponding 
Distance Zone 

Source  Rationale 

3,000m High Near-
Midground 
(3.2–8.1 km) 

Breuer, 
2001 

Captures dominant visual presence 
and blade movement; used for high-
sensitivity impact from viewpoints 

10,000m Low 
 

Far-Midground 
(8.1–16.1 km) 

Fischer & 
Roth, 2020 

Represents broader visibility of 
turbine clusters; used for medium-
sensitivity impact from viewpoints 

 



 

Results of the Viewsheds: 

Viewshed calculations were run in parallel across four workers, and the output rasters were merged 
using union and resampling functions. The results were individual, cumulative viewsheds 
representing national-scale composite rasters of visibility from multiple viewpoints: 

1. Medium LV viewpoints with a low sensitivity distance buffer (10 km)  
2. High LV viewpoints with a low sensitivity distance buffer (10 km)  
3. Medium LV viewpoints with a high sensitivity distance buffer (3 km)  
4. High LV viewpoints with a high sensitivity distance buffer (3 km)  

To exclude highly urbanized or disturbed areas, we filtered out cells likely to be in a degraded or 
modified condition based on the Human Modification Index (HMc) (Kennedy et al., 2019; 
Theobald et al., 2025). Areas with an HMc value greater than 0.4 were excluded to focus the 
analysis on relatively intact, nature-oriented landscapes. The final viewshed rasters were 
resampled to match the resolution of a common template applied to all layers in this project and 
clipped to the land extent of mainland Portugal, producing visibility layers suitable for integration 
into renewable acceleration area siting assessments. Our final viewshed layer merges the above 
rasters 1 and 2, combining both medium and high LV viewpoints with a low sensitivity buffer (10 
km), representing a more conservative approach to visual impact assessment.  

The viewsheds provided a quantification of distinct areas of visual exposure from landscapes and 
locations valued for a range of cultural, touristic and aesthetic assets, as defined by user uploaded 
FlickR content. After filtering with the HMI, approximately 606 km² of land was visible from high 
landscape value viewpoints under the low sensitivity (10 km) scenario, while 755 km² was visible 
from medium LV viewpoints. Ultimately, this layer represents zones where visual impacts from 
renewable energy infrastructure may intersect with viewscapes that hold significant landscape and 
visual aesthetic value to both residents and visitors. 

Overall, the two maps generated in this analysis (i.e., landscape value raster and cumulative 
viewsheds) serve two core functions within the broader spatial planning framework. First, they 
identify highly visible landscapes of social value where new renewable energy infrastructure, 
particularly wind, may generate significant social concern or opposition. Second, they integrate 
social values into a broader siting process that considers energy yield, technical feasibility, and 
conservation priorities. The methodology is fully reproducible and adaptable to other geographies, 
using open-source tools and publicly accessible data. 

4.2. Social-cultural value  

In complement with our viewshed layer, we developed a unified national-scale dataset representing 
areas of high social-cultural significance within the study area. This approach follows GTAER’s 
methodology and is based on five vector datasets provided by LNEG via Património Cultural, I.P. 
(PCIP, 2024; GTAER, 2024). Additionally, we added a dataset of Public Interested Trees in 
Portugal, a dataset identifies individual trees or groups of trees in Portugal that are considered to 



 

be of significant public interest due to their representativeness, rarity, size, age, historical 
importance, cultural significance, or landscape value (ICNF, 2024c). The datasets used for the 
Social-cultural value layer are displayed on Table 16. 

These national datasets of known cultural and archaeological sites across mainland Portugal 
capture distinct aspects of cultural heritage and archaeological protection. These layers are 
integrated into a single “social-cultural” dataset, combining multiple authoritative sources selected 
in consultation with domain experts to ensure comprehensive coverage of zones with cultural 
sensitivity, heritage value, and long-standing societal importance. 

Table 16: Recommended datasets for the “social-cultural” raster. 

Spatial Dataset Description 
Classified cultural 
heritage sites 

Classified or under classification cultural heritage sites (e.g., 
monuments, historical sites). 

Restriction zones Restriction zones associated with classified or under classification 
cultural heritage sites. 

Special Protection 
Zones 

Special Protection Zones (Zona de Proteção Especial) associated 
with classified or under classification cultural heritage sites. 

General Protection 
Zones 

General Protection Zones (Zona de Proteção Geral) associated with 
classified or under classification cultural heritage sites. 

Documented 
archaeological sites 

Documented archaeological sites with recommended 150m buffers. 

Public Interest Trees Public interest individual trees or groups of trees in Portugal with 
150m buffer.  

 

The selected shapefiles were harmonized to the standard coordinate reference system (EPSG:3763) 
and merged into a single vector layer using the ‘sf’ package. The merged layer was then rasterized 
using a cell-based rule: each cell is assigned a value of 1 if at least 50% of its area overlaps with 
any cultural feature. For practitioners seeking a more conservative approach, this threshold can be 
replaced with the ‘touch=TRUE’ logic (see ‘terra’ package), which assigns a value of 1 to any cell 
touched by a feature, regardless of coverage. This method helps reduce overestimation in fringe 
areas and improves alignment with other spatial layers in the assessment. 

Results for the Socio-Cultural values: 

The final output is a binary raster layer at 100 m resolution, indicating the spatial presence (value 
= 1) or absence (value = NA) of cultural or archaeological features. This dataset highlights zones 
of concentrated cultural or archaeological heritage, including areas under protected status that 
signify potential cultural sensitivity. The mapped footprint covers approximately 4556 km² of 
mainland Portugal. Final layers were clipped to the study area and masked to exclude non-land 
zones. 



 

4.3. Coastal Sensitive Areas 

In addition to the viewsheds  and social-cultural values layer, we developed a dedicated national-
scale dataset to identify coastal areas with heightened sensitivity for renewable energy siting. This 
layer was created based on the recommendation from the project partners and incorporates a 2 km 
buffer zone along the entire Portuguese coastline. This dataset also includes small islands adjacent 
to the mainland coast, ensuring more comprehensive spatial coverage. The resulting coastal 
protection layer was rasterized at 100 m resolution, with each cell assigned a value of 1 if it falls 
within the buffered coastal zone or on an included island, and NA otherwise. 

Results for the Coastal Sensitive Areas: 

The final coastal protection raster identifies approximately 1846 km² of mainland Portugal and 
adjacent islands as sensitive coastal zones. These areas are flagged for special consideration in 
renewable energy planning, particularly where development may intersect with dynamic coastal 
processes, habitats, or valued landscapes. As with other layers, the final output was clipped to the 
study area extent and masked to exclude non-land zones. 

 

4.4. Results for the Social value mapping 

To provide a comprehensive and precautionary screening tool for social conflict in renewable 
energy siting, we integrated three independently developed spatial layers: viewsheds representing 
landscape and aesthetic value, socio-cultural features encompassing cultural and archaeological 
sites, and coastal sensitivity zones. 

All three layers were harmonized and prepared for integration in previous sections, rasterized at 
100 m spatial resolution and clipped to the study area extent. This ensured direct comparability 
and eliminated spatial misalignment. The integration followed a logical union approach: for each 
cell in the study area, the presence of a conflict in any one of the three layers resulted in that cell 
being classified as a social conflict zone in the final combined raster. In other words, if a cell was 
flagged as sensitive in at least one layer, whether due to visual prominence, cultural heritage, or 
coastal protection, it was included in the final social conflict map. This method captures all 
potential sources of social sensitivity, prioritizing a precautionary approach in the early stages of 
spatial planning. 

The final social values layer identified 7,269 km² of mainland Portugal as high-conflict sites in 
terms of social conflict (Figure 26). 



 

 

Figure 26: Conflict mapping for social values. 

 

The combined social value layers in our work are intended to support informed decision-making 
by practitioners and policy makers. While these datasets primarily function as a screening tool, 
highlighting locations of landscape, aesthetic, cultural, or archaeological significance, they also 
serve to flag areas where potential conflict may arise in the context of renewable energy 



 

development. Importantly, if a given location is deemed suitable based on development potential 
and compatibility with biodiversity value, this information can guide the strategic allocation of 
resources toward more localized engagement when social-cultural features are prominent. In such 
cases, practitioners are encouraged to complement this national-scale mapping with site-specific 
data collection and participatory methods, including participatory mapping, public consultation, 
and the design of benefit-sharing schemes that center local residents, their experiences, and 
priorities. 

4.5. A pilot participatory mapping exercise in Silves municipality 

We conducted a pilot participatory mapping (PPGIS) exercise in the Silves municipality, Portugal, 
to 1) explore how local scale community values align with coarse-filter spatial datasets used in 
renewable energy siting, and 2) engage communities in co-creating spatial knowledge on valued 
landscapes and the overall RE decision-making and siting process in their area. 
A total of 18 participants and 160 mapped points were collected across five social value 
categories (agricultural, biodiversity, cultural, economic/tourism, and landscape/visual aesthetics). 

All spatial analyses were performed in the ETRS89 / Portugal TM06 projection (EPSG:3763), 
ensuring alignment with our study’s national-scale datasets. The analysis window was defined as 
the Silves municipal boundary (source: geoBoundaries), supplemented with a small (300 m) buffer 
around any mapped points that fell outside of the administrative polygon that still displayed on the 
PPGIS application. This "practical boundary" ensured that all community-mapped values were 
retained within a valid analysis domain, while remaining geographically realistic for the analysis. 

We applied a kernel density estimation (KDE) approach to generate continuous spatial surfaces 
representing the relative intensity of mapped social value points across the study area. We used an 
automatic bandwidth selection method, the likelihood cross-validation method (bw.ppl), from the 
R package ‘spatstat.explore’, an approach well-suited for tight clustered point distributions 
(Baddeley et al., 2016). For visualization and interpretability, the selected bandwidth was scaled 
by a factor of 1.25 (σ × 1.25). KDE surfaces were computed at a 100 m resolution, aligned with 
the resolution of our national-scale coarse-filter conflict raster, and a minimum patch size of 16 
grid cells (~0.16 km²) that filtered out spurious small clusters. 

Hotspot extraction was performed by retaining ~70% of mapped points within the highest-density 
KDE cells (the “retention threshold”). This threshold is somewhat lower than the 80% used in 
Pocewicz et al. (2013), but was selected to balance inclusivity with interpretability given the pilot 
nature of our dataset (n = 160). Sensitivity checks at 65% and 75% retention confirmed that the 
main clusters were stable across thresholds. Through this analysis, we produced polygons 
representing social value hotspots suitable for visualization, comparison with our coarse-filter 
outputs, and planning insights.   

We analyzed both pooled hotspots (all values combined) and per-category hotspots (n=5). Our 
report primarily presents patterns from the pooled hotspots. In addition, we tested sensitivity to the 
hotspot retention threshold (65%, 70%, 75%). Finally, we compared the identified local-scale 



 

hotspots with our study’s national combined conflict raster to assess how community-mapped 
values aligned or diverged from a pre-screening approach of coarse-filter siting. 

4.5.1. Results from the participatory mapping exercise 

As part of this exercise, citizens in Silves municipality mapped 160 points of social value across 5 
categories: Cultural value (40), Landscape/visual aesthetics (38), Biodiversity importance (34), 
Agricultural value (31), and Economic or tourism value (23). Across all our results, in line with 
The Nature Conservancy’ss Human Subject Research guidelines, we present figures with 
aggregated data on important social value areas (i.e., hotspot polygons) and withheld individual 
participant mapped points to protect their exact locations. Contact the project team to inquire about 
accessing figures with participant points, which may be made available upon reasonable request 
and with appropriate measures taken to ensure participant anonymity. 

For all the public participatory mapped points, pooled across the social value categories, our KDE 
identified 11 hotspot clusters that cover about 13% of Silves (~85 km²), while capturing ~70% of 
all mapped points (Figure 27). These patch sizes ranged from 0.3 km² to nearly 35 km², with a 
median of 0.57 km² (Table 17). This indicates that participants mapped several values in a 
concentrated manner, suggesting some key value areas, but at least some valued areas were spread 
across the municipality. 

Table 17: Summary metrics for hotspots at a 70% retention thres (pooled across all mapped 
points). 

 

 

 

 

 

Metric Value 

# Patches 11 

Area (km²) 84.5 

% of Window Area 13.1 

% Points Inside 70 

Median Patch Size (km²) 0.57 

Mean Patch Size (km²) 7.68 

IQR Patch Size (km²) 8.84 

Min Patch Size (km²) 0.28 

Max Patch Size (km²) 35.4 



 

 

Figure 27: Pooled social value hotspots in Silves (blue). Participant points are masked to protect 
exact locations. Our analysis considered a minimum density threshold (hereafter, retention thresh-
old) that captured ~70% of the points. Projection EPSG:3763. 

A central purpose of this public participatory mapping exercise was to understand how local-scale, 
community values attributed to the landscape may differ or correspond with the spatial conflict 
data our study has developed through a pre-screening, coarse-filter approach.  

When we compared our identified clusters (for the pooled participant data) with the national 
conflict raster (combining both social and environmental layers), more than 90% of our hotspot 
area overlapped with land classified as having potential conflict (Figure 28). This pattern generally 
aligned with was expected from the coarse-filter layer, which indicated large portions of the 
municipality as high conflict, when combining all the conflict layers. Only 8% of the pooled 
hotspots fell in “non-conflict” zones, and in most cases those areas were located adjacent to areas 
of potential conflict. If we consider value-specific hotspots, clusters pertaining to biodiversity and 
economic/tourism values were almost entirely within areas we had identified as conflict (>97%). 



 

Hotspots for landscape value and visual aesthetics had the greatest representation, with nearly 13% 
falling outside of known, pre-screened conflict areas. These patterns indicate that in this population 
sample of public participatory mapping, the local data was well-aligned with the coarse-filter 
datasets but also provided insight to the relative priorities (social value types) within a blanket 
“conflict” designation.  

 

Figure 28: Hotspot polygons for pooled social value points (blue) overlaid with lands classified 
as “conflict” per coarse-filter environmental and social data (red). Individual social value points 
have been masked to protect exact locations. Projection EPSG:3763. 

 

Despite the limited geographic and temporal scope of this participatory component of the project, 
we tested for the degree of clustering using the Clark-Evans nearest-neighbor test and confirmed 
significant clustering present across value attributes in our sample.  

 



 

 

Figure 29: Hotspot polygons identified in our analysis for pooled social value data, with KDE 
contour lines representing successive quantiles that highlight progressively higher-density clusters 
of participant input. Our analysis retained areas enclosing ~70% of mapped points (i.e., the top 
30% of KDE density values), shown here by the amber contour line. 

 



 

4.5.1.1. Identified hotspots categorized by social value type 

While our main analysis focused on pooled hotspots across all values (n=160), for exploratory 
purposes, we also generated per-category clusters to examine any differences in spatial expression 
of social values (Table 18). As a caveat, these results should be treated as preliminary insights due 
to the relatively small sample sizes of mapped points for each category. Nonetheless, we can 
highlight distinct patterns within this constrained sample (Figure 30). 

 

Table 18: Summary of hotspot metrics by social value categories in Silves. 

Category 

# 
Patche
s 

Area 
(km²) 

% of 
Win-
dow 
Area 

% 
Points 
Inside 

Me-
dian 
Patch 
Size 
(km²) 

Mean 
Patch 
Size 
(km²) 

IQR 
Patch 
Size 
(km²) 

Min 
Patch 
Size 
(km²) 

Max 
Patch 
Size 
(km²) 

Agricul-
tural Value 

9 194.9 30.2 71.0 0.5 21.7 0.3 0.3 191.3 

Biodiver-
sity Im-
portance 

9 23.2 3.6 70.6 0.5 2.6 1.6 0.2 11.1 

Cultural 
Value 

8 55.0 8.5 74.4 0.6 6.9 2.5 0.2 42.7 

Eco-
nomic/Tour
ism Value 

10 112.9 17.5 68.2 0.4 11.3 0.5 0.3 86.1 

Land-
scape/Vis-
ual Aesthet-
ics 

9 201.5 31.2 70.6 0.5 22.4 0.6 0.3 107.3 

 

 



 

 

Figure 30: Hotspot polygons shown separately for each social value category. 

We find the largest footprints of a social value hotspot for agricultural and landscape/visual 
aesthetic values, covering approximately 195 km² (30% of the analysis boundary, i.e., Silves 
municipality) and 201 km² (31%), respectively. In both cases, the large area was driven by one or 
two dominant patches (maximum sizes of 191 km² and 107 km²), alongside several much smaller 
fragments. This indicates that agricultural and aesthetic values were mapped broadly across the 
landscape, consistent with expectations from coarse-filter consultations. 

In contrast, we found more compact clusters for biodiversity importance, covering only 23 km² 
(3.6% of Silves), with a maximum patch size of 11 km². These clusters reflect more localized 
values attributed to the landscape, suggesting that participants reported locations of biodiversity 
importance with highly specific areas in mind rather than spanning broader swaths of land. 



 

There were intermediate patterns for cultural value hotspots, with eight patches covering ~55 km² 
(8.5%). While fewer in overall number, these clusters tended to be larger relative to biodiversity 
hotspot areas, suggesting that the cultural values participants mapped were associated with 
relatively expansive but discrete areas. 

Finally, economic and tourism values covered ~113 km² (17.5%), with one particularly large patch 
reaching 86 km². These hotspots were moderately fragmented, indicating that economic/tourism 
values were more dispersed than the mapped locations of cultural or biodiversity value, but less 
spatially expansive than agricultural or aesthetic values. 

 

4.5.2. Overlap with coarse-filter conflict data 

When overlaid with the national siting conflict layer (combining both environmental and social 
datasets into a binary 0/1 raster), categorical hotspots showed uniformly high levels of overlap 
with conflict-classified land. More than 85% of every category’s hotspot area fell inside conflict 
zones, and for biodiversity, cultural, and economic/tourism categories, overlap exceeded 95%. 
Only landscape aesthetics displayed a modestly higher proportion outside conflict (~12.8%), 
reflecting its broader footprint and greater likelihood of intersecting non-conflict areas. Still, these 
areas were adjacent to large expanses of area/pixels classified as potential for conflict. 

The pooled hotspots as a whole showed ~91% overlap with conflict areas, leaving just ~8% in 
non-conflict zones. While this confirms that the Silves municipality is broadly characterized as 
high-conflict under the coarse-filter dataset, the category-specific analysis demonstrates how local 
mapping can help differentiate relative priorities within uniformly flagged regions. 

Table 19:Percept overlap between pooled and social value category-specific hotspot areas with 
conflict and non-conflict zones (as defined by pixels classified as combined environmental and 
social conflict per national-scale coarse-filter data). 

Category % Overlap - conflict zones % Overlap - non-conflict zones 

Pooled values 91.4 8.1 

Agricultural Value 93.4 6.3 

Biodiversity Importance 97.5 0.6 

Cultural Value 96.4 2.8 

Economic/Tourism Value 98.7 0.9 

Landscape/Visual Aesthetics 86.9 12.8 



 

Sensitivity Analyses: 

We tested the sensitivity of our points retention threshold and confirmed that the same core 
clusters persisted across thresholds (65%, 70%, 75%), though total hotspot area increased at higher 
retention levels (Table 20; Figure 31). Broadly, this suggests that the approach to hotspot 
delineation was relatively robust and our spatial patterns were not highly sensitive to cut-off choice 
for this sample. 

We also tested sensitivity of pooled hotspots generated from a range of KDE point-retention 
thresholds (65%, 70%, 75%). Results indicated that the same core clusters were preserved across 
all thresholds, though total hotspot area and patch counts increased slightly at higher retention 
levels. At 65%, one fewer cluster was retained; at 75%, larger and denser clusters dominated. We 
performed this test as an exploratory check for robustness and to ensure that the pilot results were 
not an artefact of a particular cutoff, though we recommend retaining 70% as a balanced threshold. 
The primary methodology we followed for this analysis set their minimum density threshold at 
80%, however their study had a relatively larger project area and sample size. 

 

 

Figure 31: Hotspot sensitivity analysis across 65%-, 70%-, and 75%-point retention thresholds. 
Faceted plots represent output hotspot polygons from each of these applied thresholds. 

 

 

 

 

 



 

 

Table 20: Summary of hotspot metrics by social value categories in Silves. 

Reten-
tion 
Thresh-
old 

# 
Patches 

Area 
(km²) 

% of 
Win-
dow 
Area 

% 
Points 
Inside 

Me-
dian 
Patch 
Size 
(km²) 

Mean 
Patch 
Size 
(km²) 

IQR 
Patch 
Size 
(km²) 

Min 
Patch 
Size 
(km²) 

Max 
Patch 
Size 
(km²) 

65% 10 63.4 9.8 65 0.55 6.34 2.90 0.26 31.8 

70% 11 84.5 13.1 70 0.57 7.68 8.84 0.28 35.4 

75% 12 93.3 14.5 75 0.55 7.78 9.56 0.17 36.7 
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Supplementary material:  
1) Biodiversity values used in the Extent layer from the coarse filter (in Portuguese) 

 

COS2018 Classes 
Biodiversity 
value 

Tecido edificado contínuo predominantemente vertical 0.0 

Tecido edificado contínuo predominantemente horizontal 0.0 

Tecido edificado descontínuo 0.0 

Tecido edificado descontínuo esparso 0.0 

Áreas de estacionamentos e logradouros 0.0 

Espaços vazios sem construção 0.0 

Indústria 0.0 

Comércio 0.0 

Instalações Agrícolas 0.0 

Infraestruturas de produção de energia renovável 0.0 

Infraestruturas de produção de energia não renovável 0.0 

Infraestruturas para captação, tratamento e abastecimento de Águas para 
consumo 0.0 

Infraestruturas de tratamento de resíduos e Águas residuais 0.0 

Rede viária e espaços associados 0.0 

Rede ferroviária e espaços associados 0.0 

Terminais portuários de mar e de rio 0.0 

Estaleiros navais e docas secas 0.0 

Marinas e docas pesca 0.0 

Aeroportos 0.0 

AerÃ³dromos 0.0 

Minas a céu aberto 0.0 

Pedreiras 0.0 

Aterros 0.0 



 

Lixeiras e Sucatas 0.0 

Áreas em construção 0.0 

Campos de golfe 0.0 

Instalações desportivas 0.0 

Parques de campismo 0.0 

Equipamentos de lazer 0.0 

Equipamentos culturais 0.0 

Cemitérios 0.0 

Outros equipamentos e Instalações turísticas 0.0 

Parques e jardins 0.5 

Arrozais 0.5 

Vinhas 0.0 

Pomares 0.0 

Olivais 0.0 

Culturas temporárias e/ou pastagens melhoradas associadas a vinha 0.5 

Culturas temporárias e/ou pastagens melhoradas associadas a pomar 0.5 

Culturas temporárias e/ou pastagens melhoradas associadas a olival 0.5 

Mosaicos culturais e parcelares complexos 0.5 

Agricultura com espaços naturais e seminaturais 0.5 

Agricultura protegida e viveiros 0.0 

Pastagens melhoradas 0.5 

Pastagens espontâneas 1.0 

SAF de sobreiro 1.0 

SAF de azinheira 1.0 

SAF de outros carvalhos 1.0 

SAF de pinheiro manso 1.0 

SAF de outras espécies 1.0 

SAF de sobreiro com azinheira 1.0 



 

SAF de outras misturas 1.0 

Florestas de sobreiro 1.0 

Florestas de azinheira 1.0 

Florestas de outros carvalhos 1.0 

Florestas de castanheiro 1.0 

Florestas de eucalipto 0.0 

Florestas de espécies invasoras 0.0 

Florestas de outras folhosas 1.0 

Florestas de pinheiro bravo 0.5 

Florestas de pinheiro manso 0.5 

Florestas de outras resinosas 0.5 

Matos 0.5 

Praias, dunas e areais interiores 1.0 

Praias, dunas e areais costeiros 1.0 

Rocha nua 0.5 

Vegetação esparsa 0.0 

Pauis 1.0 

Sapais 1.0 

Zonas entremarés 1.0 

Cursos de Água naturais 1.0 

Cursos de Água modificados ou artificializados 0.5 

Lagos e lagoas interiores artificiais 0.5 

Lagos e lagoas interiores naturais 1.0 

Albufeiras de barragens 0.5 

Albufeiras de represas ou de açudes 0.5 

Charcas 0.5 

Aquicultura 0.0 

Salinas 0.0 



 

Lagoas costeiras 1.0 

Desembocaduras fluviais 1.0 

Culturas temporárias de sequeiro 0.5 

Culturas temporárias de regadio 0.0 



 

1) List of species considered for the fine filter with the IUCN criteria and the numerical value 

ID Rel ID Group Species Common Name 
IUCN Bird 

Atlas/Red Book 
criteria 

IUCN 
numerical 

criteria 

1 1 Birds Accipiter gentilis Açor VU 0.6 

2 2 Birds Actitis hypoleucos Maçarico-das-rochas VU 0.6 

3 3 Birds Aegypius monachus Abutre-preto EN 0.8 

4 4 Birds Alaudala rufescens Calhandrinha-das-marismas EN 0.8 

5 5 Birds Anthus spinoletta Petinha-ribeirinha EN 0.8 

6 6 Birds Apus caffer Andorinhão-cafre VU 0.6 

7 7 Birds Aquila chrysaetos Águia-real EN 0.8 

8 8 Birds Aquila fasciata Águia-perdigueira VU 0.6 

9 9 Birds Ardea purpurea Garça-vermelha VU 0.6 

10 10 Birds Ardeola ralloides Papa-ratos EN 0.8 

11 11 Birds Asio otus Bufo-pequeno VU 0.6 

12 12 Birds Aythya ferina Zarro-comum EN 0.8 

13 13 Birds Bubo bubo Bufo real NT 0.4 

14 14 Birds Bubulcus ibis Carraceiro VU 0.6 

15 15 Birds Burhinus oedicnemus Alcaravão VU 0.6 

16 16 Birds Calonectris borealis Cagarra EN 0.8 

17 17 Birds Cercotrichas galactotes Solitário EN 0.8 

18 18 Birds Charadrius alexandrinus Borrelho-de-coleira-interrompida EN 0.8 

19 19 Birds Chlidonias hybrida Gaivina-dos-pauis CR 1.0 



 

20 20 Birds Ciconia nigra Cegonha-preta EN 0.8 

21 21 Birds Circus cyaneus Tartaranhão-cinzento CR 1.0 

22 22 Birds Circus pygargus Águia-caçadeira EN 0.8 

23 23 Birds Columba oenas Seixa VU 0.6 

24 24 Birds Coracias garrulus Rolieiro CR 1.0 

25 25 Birds Corvus monedula Gralha-de-nuca-cinzenta EN 0.8 

26 26 Birds Emberiza citrinella Escrevedeira-amarela EN 0.8 

27 27 Birds Emberiza hortulana Sombria VU 0.6 

28 28 Birds Emberiza schoeniclus Escrevedeira-dos-caniços EN 0.8 

29 29 Birds Falco naumanni Francelho EN 0.8 

30 30 Birds Falco peregrinus Falcão-peregrino VU 0.6 

31 31 Birds Falco subbuteo Ógea VU 0.6 

32 32 Birds Falco tinnunculus Peneireiro-comum VU 0.6 

33 33 Birds Gallinago gallinago Narceja-comum CR 1.0 

34 34 Birds Gelochelidon nilotica Tagaz VU 0.6 

35 35 Birds Glareola pratincola Perdiz-do-mar VU 0.6 

36 36 Birds Gulosus aristotelis Gulosus aristotelis EN 0.8 

37 37 Birds Hydrobates castro Roque-de-castro VU 0.6 

38 38 Birds Ixobrychus minutus Garçote VU 0.6 

39 39 Birds Lanius collurio Picanço-de-dorso-ruivo VU 0.6 

40 40 Birds Lanius meridionalis Picanço-real VU 0.6 

41 41 Birds Lanius senator Picanço-barreteiro VU 0.6 

42 42 Birds Larus fuscus Gaivota-d'asa-escura VU 0.6 



 

43 43 Birds Locustella luscinioides Cigarrinha-ruiva VU 0.6 

44 44 Birds Loxia curvirostra Cruza-bico VU 0.6 

45 45 Birds Milvus milvus Milhafre-real CR 1.0 

46 46 Birds Monticola saxatilis Melro-das-rochas EN 0.8 

47 47 Birds Neophron percnopterus Britango EN 0.8 

48 48 Birds Netta rufina Pato-de-bico-vermelho VU 0.6 

49 49 Birds Oenanthe hispanica Chasco-ruivo VU 0.6 

50 50 Birds Oenanthe leucura Chasco-preto CR 1.0 

51 51 Birds Otis tarda Abetarda EN 0.8 

52 52 Birds Otus scops Mocho-d'orelhas VU 0.6 

53 53 Birds Pandion haliaetus Águia-pesqueira CR 1.0 

54 54 Birds Pterocles orientalis Cortiçol-de-barriga-preta EN 0.8 

55 55 Birds Pyrrhocorax pyrrhocorax Gralha-de-bico-vermelho VU 0.6 

56 56 Birds Saxicola rubetra Cartaxo-nortenho EN 0.8 

57 57 Birds Spatula clypeata Pato-colhereiro VU 0.6 

58 58 Birds Sterna hirundo Garajau-comum EN 0.8 

59 59 Birds Sylvia borin Toutinegra-das-figueiras VU 0.6 

60 60 Birds Tetrax tetrax Sisão CR 1.0 

61 61 Birds Tringa totanus Perna-vermelha-comum CR 1.0 

62 62 Birds Uria aalgae* Airo CR 1.0 

63 1 Bats Myotis blythii Morcego-rato-pequeno CR 1.0 

64 2 Bats Myotis emarginatus Morcego-lanudo EN 0.8 

65 3 Bats Myotis escalerai Morcedo-de-franja-do-sul VU 0.6 



 

66 4 Bats Myotis myotis Morcego-rato-grande VU 0.6 

67 5 Bats Myotis mystacinus Morcedo-de-bigodes VU 0.6 

68 6 Bats Rhinolophus euryale Morcego-de-ferradura-mediterrânico EN 0.8 

69 7 Bats Rhinolophus mehelyi Morcego-de-ferradura-mourisco EN 0.8 

70 1 Mammals Arvicola sapidus Rato-de-água VU 0.6 

71 2 Mammals Canis lupus Lobo EN 0.8 

72 3 Mammals Crocidura suaveolens 
Musaranho-de-dentes-brancos-
pequeno EN 0.8 

73 4 Mammals Felis silvestris Gato-bravo EN 0.8 

74 5 Mammals Galemys pyrenaicus Toupeira-de-água EN 0.8 

75 6 Mammals Lepus granatensis Lebre-ibérica VU 0.6 

76 7 Mammals Lynx pardinus Lince-ibérico EN 0.8 

77 8 Mammals Martes martes Marta VU 0.6 

78 9 Mammals 
Microtus agrestis (Microtus 
rozianus) Rato-do-campo-lusitano VU 0.6 

79 10 Mammals Microtus cabrerae Rato-de-cabrera VU 0.6 

80 11 Mammals Mustela putorius Toirão EN 0.8 

81 12 Mammals Neomys anomalus Musaranho-de-água VU 0.6 

82 13 Mammals Oryctolagus cuniculus Coelho-ibérico VU 0.6 

83 14 Mammals Sorex granarius Musaranho-de-dentes-vermelhos VU 0.6 

84 15 Mammals Sorex minutus 
Musaranho-anão-de-dentes-
vermelhos EN 0.8 

85 16 Mammals Ursus arctos Urso-pardo CR 1.0 



 

3. Statistical parameters for the Coarse and Fine Filters 

 

 

 

Statistics Coarse Filter (complete) Coarse Filter (without 3’s) Fine Filter 

Minimum 0.00 0.00 0.00 

1st Quantile 0.81 0.30 0.29 

Median 1.45 0.91 0.39 

3rd Quantile 3.00 1.14 0.50 

Maximum 3.00 2.00 1.00 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

Supplementary Materials 

Table S1: Keywords considered in this analysis for content filtering.  

Category Subcategory Portuguese English Spanish German Italian 

Generic 
Landscape 
Features 

General natureza, 
paisagem, 
paisagem 
cultural, 
território 
cultural, 
colina 

nature, 
landscape, 
cultural 
landscape, 
cultural land, 
hill 

naturaleza, 
paisaje, paisaje 
cultural, tierra 
cultural, colina 

Natur, Landschaft, 
Kulturlandschaft, 
Kulturlandschaften, 
Kulturland 

natura, 
paesaggio, 
paesaggi, 
paesaggio 
culturale, 
paesaggi 
culturali, 
territorio 
culturale 

 

Terrain montanha, 
serra, vale, 
bacia, 
planalto, 
cume, 
penhasco, 
pico, 
desfiladeiro, 
geleira 

mountain, 
valley, basin, 
highland, 
ridge, cliff, 
peak, gorge, 
glacier 

montaña, valle, 
cuenca, 
meseta, cresta, 
acantilado, 
pico, 
desfiladero, 
glaciar 

Hügel, Berg, Berge, 
Tal, Täler, 
Hochebene, Kamm, 
Klippe, Klippen, 
Gipfel, Schlucht, Kar, 
Joch, Plateau, 
Gebirge, Ebene 

collina, colline, 
montagna, 
montagne, valle, 
valli, altopiano, 
altopiani, 
scogliera, 
scogliere, vetta, 
vette, gola, gole, 
ghiacciaio 

 

Waterbodies/Coastal 
Ecosystems 

praia, 
margem, 
costa, mar, 
oceano, zona 

beach, shore, 
coast, sea, 
ocean, 
wetland, 

playa, orilla, 
costa, mar, 
océano, 
humedal, río, 

Strand, Strände, Ufer, 
Küste, Meer, Meere, 
Ozean, Sumpfgebiet, 
Fluss, Deich, Bach, 

spiaggia, 
spiagge, riva, 
rive, costa, coste, 
mare, mari, 



 

húmida, rio, 
dique, riacho, 
lago, cascata, 
cachoeira, 
duna, 
pântano, 
lagoa, vala, 
canal, 
estuário, 
ribeira 

river, dike, 
brook, lake, 
waterfall, 
dune, swamp, 
pond, ditch, 
channel, 
estuary, creek 

dique, arroyo, 
lago, cascada, 
duna, pantano, 
estanque, 
zanja, canal, 
estuario 

See, Wasserfall, 
Düne, Sumpf, Teich, 
Graben, Kanal, 
Mündung, Gletscher 

oceano, oceani, 
fiume, fiumi, 
diga, dighe, 
ruscello, ruscelli, 
lago, laghi, 
cascata, duna, 
dune, palude, 
stagno, stagni, 
fossato, fossati, 
canale, canali, 
estuario, 
torrente, torrenti 

 

Woodlands floresta, 
árvore, 
bosque, copa, 
arvoredo, 
sebe, arbusto, 
matos, 
Sobreiro, 
Azinheira 

forest, tree, 
woods, 
canopy, 
grove, 
hedgerow, 
bush, 
meadow, 
grassland, 
pasture 

bosque, árbol, 
arboleda, seto, 
arbusto, prado, 
pradera, 
pastizal, 
campo 

Wald, Wälder, Forst, 
Baum, Bäume, Hain, 
Hecke, Busch, 
Gebüsch 

foresta, foreste, 
albero, alberi, 
bosco, boschi, 
ulivo, ulivi, 
oliveto, oliveti, 
siepe, siepi, 
cespuglio, 
cespugli 

 

Agrarian 
LU/Management 

prado, 
pastagem, 
pasto, interior, 
pradaria, 
milho, trigo, 
aveia, 

prairie, 
maize, corn, 
wheat, oats, 
livestock, 
cattle, cow, 
sheep, 

pradera, maíz, 
trigo, avena, 
ganado, vaca, 
oveja, huerto, 
campo, viñedo, 
cultivos, tierras 

Wiese, Weide, Mais, 
Weizen, Hafer, Vieh, 
Rind, Kuh, Schaf, 
Obstplantage, Acker, 
Weinberg, 

prato, prati, 
prateria, praterie, 
pascolo, pascoli, 
campagna, 
granturco, 
granoturco, mais, 



 

pecuária, 
bovino, vaca, 
ovelha, 
pomar, 
campo, vinha, 
culturas, 
terras de 
cultivo, 
pastoreio 

orchard, field, 
vineyard, 
crops, 
cropland, 
grazing 

de cultivo, 
pastoreo 

Nutzpflanzen, Alm, 
Sonnenblumen 

grano, avena, 
bestiame, mucca, 
mucche, pecora, 
pecore, frutteto, 
frutteti, campo, 
campi, terreno, 
terreni, vigna, 
vigneto, 
coltivato, 
coltivati, 
raccolto, 
vendemmia 

 

Other LULC urze, 
charneca, 
parque, turfa, 
turfeira, 
pântano, 
sapais, pauis, 
brejo, 
arbustos, 
matagal 

heather, 
heath, 
heathland, 
park, peat, 
peatland, 
peatbog, 
marsh, moor, 
shrubs, 
shrubland 

brezo, brezal, 
parque, turba, 
turbera, 
pantano, 
marismas, 
páramo, 
arbustos, 
matorrales 

Heide, Heideland, 
Park, Moor, 
Torfmoor, Torf, 
Niedermoor, 
Hochmoor, 
Sumpfland, Strauch, 
Sträucher 

erica, brughiera, 
brughiere, parco, 
torba, torbiere, 
torbiera, paludi, 
arbusto, arbusti 

Ambiguous 
Cultural 
Services 

- relaxar, 
cruzeiro, 
relaxante, 
beleza, belo, 
magnífico, 
esplendor, 

relax, 
cruising, 
relaxing, 
beauty, 
beautiful, 
magnificent, 

relajarse, 
crucero, 
relajante, 
belleza, 
hermoso, 
magnífico, 

entspannen, 
Kreuzfahrt, 
entspannend, 
Schönheit, prächtig, 
Glanz, inspirierend, 
erhaben, 

rilassarsi, 
crociera, 
rilassante, 
bellezza, bello, 
bella, bellissimo, 
magnificenza, 



 

brilho, 
brilhante, 
inspirador, 
sublime, 
lindo, 
excelente, 
encantador, 
maravilhoso 

splendour, 
brilliance, 
inspiring, 
sublime, 
gorgeous, 
outstanding, 
enchanting 

esplendor, 
brillante, 
inspirador, 
sublime, 
sobresaliente, 
encantador 

wunderschön, 
hervorragend, 
bezaubernd 

magnifico, 
splendore, 
brillantezza, 
ispira, ispirato, 
sublime, 
meraviglioso, 
eccezionale, 
godendo, 
magico, 
mozzafiato 

Unambiguous 
Cultural 
Services 

Recreation andar, 
caminhar, 
caminhada, 
acampar, 
campismo, 
recreação, 
ciclismo, 
equitação, 
pesca, 
turismo, 
escalada, 
trekking, 
esqui, vela, 
remo, 
cruzeiro, 
alpinismo 

walk, hiking, 
camp, 
recreation, 
cycling, horse 
riding, 
fishing, 
tourism, 
climbing, 
trekking, 
skiing, 
sailing, 
rowing, 
cruising 

caminar, 
senderismo, 
campamento, 
recreación, 
ciclismo, 
montar a 
caballo, pescar, 
turismo, 
escalar, 
montañismo, 
esquiar, 
navegar, remar 

wandern, spazieren, 
campen, Erholung, 
Radfahren, Reiten, 
Fischerei, Tourismus, 
segeln, rudern, 
Kreuzfahrt, 
Bergsteigen, 
Klettern, Trekking, 
ski fahren 

camminata, 
camminare, 
trekking, 
campeggio, 
ricreazione, 
ciclismo, 
equitazione, 
pescare, 
mountain bike, 
corsa, jogging, 
caccia, turismo, 
vela, 
canottaggio, 
crociera, 
rilassamento, 
relax, all’aperto, 
arrampicata, sci 



 

 

Aesthetics ao ar livre, 
vista, 
panorama, 
cenário, 
património, 
valor 
histórico, 
magnífico, 
esplêndido, 
inspirador, 
sublime, 
excepcional 

outdoor, 
vista, 
panorama, 
scenic, 
heritage, 
historic value, 
magnificent, 
splendid, 
inspiring, 
sublime, 
exceptional 

al aire libre, 
vista, 
panorama, 
pintoresco, 
patrimonio, 
valor histórico, 
magnífico, 
espléndido, 
inspirador, 
sublime, 
excepcional 

Aussicht, Panorama, 
landschaftlich, 
Kulturerbe, 
historischer Wert, 
prächtig, großartig, 
inspirierend, erhaben, 
außergewöhnlich 

vista, panorama, 
scenico, veduta, 
bellezza, punto 
panoramico, 
patrimonio, 
valore storico, 
magnifico, 
splendido, ispira, 
sublime, 
grandioso, 
eccezionale, 
godendo, 
magico, 
mozzafiato 



 

 


